Functorial cluster embedding

Steve Huntsman

FAST Labs / Cyber Technology https://bit.ly/35DMQjr

10 November 2019

Overview: TPE + functorial clustering = FCE

- Dimensionality reduction is a basic and ubiquitous approach for understanding high-dimensional data
 - Linear archetype: principal components analysis (PCA)
 - Most nonlinear dimensionality reduction (NLDR) techniques are *ad hoc*, even when motivated by or using theorems
- The NLDR technique of tree-preserving embedding (TPE) turns out to be functorial
- A category-theoretical classification of hierarchical clustering schemes gives a recipe for transforming TPE into essentially all functorial NLDR methods under the aegis of *functorial cluster embedding* (FCE)
 - Carlsson, G. and Mémoli, F. JMLR 11, 1425 (2010); Found. Comp. Math. 13, 221 (2013)
- Preceding two bullets essentially the only original material here

The quintessential NLDR example

- 2D map results from applying NLDR to a globe surface in 3D
 - Different map projections suit varying purposes...
 - ...but tradeoffs are inevitable: e.g., topological information (a nontrivial homology class) must be lost unless the embedding has a point at infinity

Tree preserving embedding

- For details see Shieh, A. D., et al. PNAS 108, 16916 (2011)
- TPE preserves the single-linkage dendrogram
 - = hierarchical clustering of points resulting from merging cluster pairs with minimum nearest-neighbor distance
- How TPE does it:
 - Constrained optimization preserves the SL dendrogram
 - · Acts directly on dissimilarities: no need for vector data
 - Infeasible in practice, but a good greedy approximation exists
 - Use an optimal rigid transformation of prior embedding instead of reembedding at each step
 - $O(n^3)$ runtime, typical for the class of NLDR algorithms

TPE examples from Shieh et al.

protein sequence dissimilarity (colors/labels for organism domains)

images of handwritten digits (colors/labels for digits themselves)

Relevant categories (see Carlsson and Mémoli)

- *M*^{iso} ⊂ *M*^{inj} ⊂ *M*^{gen}: objects are finite metric spaces (*X*, *d_X*); morphisms are isometries/injective distance-nonincreasing maps
- C ("standard clustering algorithm outputs"): objects are (X, P_X), where P_X is a partition of X into clusters; morphisms are f : X → Y s.t. P_X refines f*(P_Y) := {f⁻¹(B) : B ∈ P_Y}
- *P* ("hierarchical clustering algorithm outputs"): objects are persistent sets (X, θ_X) and morphisms are f: (X, θ_X) → (Y, θ_Y) s.t. θ_X(r) ≤ f*(θ_Y(r)) for all r
 - Here X is a finite set and θ_X is a map from ℝ_{≥0} to the set of partitions of X s.t. i) r ≤ s ⇒ θ_X(r) ≤ θ_X(s) and ii) for all r ≥ 0 there exists ε > 0 s.t. θ_X(r') = θ_X(r) for all r ≤ r' ≤ r + ε. A dendrogram is a persistent set (X, θ_X) s.t. θ_X(t) consists of a single cluster for some t

Relevant equivalence relations

- For $x, x' \in (X, d_X)$ and $r \ge 0$:
 - x ~_r x' iff there exists a sequence x = x₀, x₁,..., x_k = x' of points in X s.t. d_X(x_j, x_{j+1}) ≤ r for 0 ≤ j ≤ k − 1;
 - more generally, for any m ∈ Z_{≥0}, an equivalence relation ~^m_r obtained by keeping equivalence classes under ~_r of cardinality ≥ m and associating any unaccounted-for points to singleton equivalence classes;
- For B, B' ∈ P_X, R ≥ 0 and a *linkage function* ℓ defining the distance between clusters, B ~_{ℓ,R} B' iff there exists a sequence B = B₀, B₁, ..., B_k = B' of clusters in P_X s.t. ℓ(B_j, B_{j+1}) ≤ R for 0 ≤ j ≤ k − 1.

Relevant functors

- Standard clustering functor $\mathfrak{C} : (\mathcal{M}^{iso}, \mathcal{M}^{inj}, \mathcal{M}^{gen}) \to \mathcal{C}$
 - Functoriality amounts to $(X, d_X) \xrightarrow{f} (Y, d_Y) \xrightarrow{\mathfrak{C}} (Y, P_Y) =$ $(X, d_X) \xrightarrow{\mathfrak{C}} (X, P_X) \xrightarrow{\mathfrak{C}(f)} (Y, P_Y) \text{ w/ typical } \mathfrak{C}(f) = f \text{ in Set}$
- Vietoris-Rips or single-linkage clustering functor $\mathfrak{R}_r : \mathcal{M} \to \mathcal{C}$
 - $\mathfrak{R}_r(X, d_X) := (X, P_X(r))$, where $P_X(r)$ is the partition for \sim_r
 - $\mathfrak{R}_r(f: X \to Y)$ given by regarding f as a morphism from $(X, P_X(r))$ to $(Y, P_Y(r))$ in \mathcal{C}

• Vietoris-Rips hierarchical clustering functor $\mathfrak{R}: \mathcal{M}^{gen} \to \mathcal{P}$

- $\mathfrak{R}(X, d_X) := (X, \theta_X)$ and where $\theta_X(r) = P_X(r)$ as above
- $\mathfrak{R}(f: X \to Y)$ given by regarding f as a morphism from $(X, \theta_X(r))$ to $(Y, \theta_Y(r))$ in \mathcal{P}

Representable/excisive standard clustering functors

- More general class of standard clustering functors than \mathfrak{R}_r
 - Defined in terms of a family $\boldsymbol{\Omega}$ of finite metric spaces
- $\mathfrak{C}^{\Omega}:\mathcal{M}
 ightarrow\mathcal{C}$ is given by $\mathfrak{C}^{\Omega}(X,d_X):=(X,P_X)$
 - Here x and x' belong to the same cluster of P_X iff there exists a sequence $x = x_0, x_1, \ldots, x_k = x'$ of points in the cluster, along with $\{\omega_j\}_{j=1}^k \subseteq \Omega$, $(\alpha_j, \beta_j) \in \omega_j^2$, and $f_j \in \hom_{\mathcal{M}}(\omega_j, X)$ for $0 \le j \le k-1$ s.t. $f_j(\alpha_j) = x_{j-1}$ and $f_j(\beta_j) = x_j$.
 - Example: ℜ_r = C^{Δ₂(r)}, where Δ_m(r) denotes the metric space with m points each at distance r from each other
- Theorem: $|\Omega| < \infty \Rightarrow \mathfrak{C}^{\Omega} = \mathfrak{R}_1 \circ \mathfrak{I}^{\Omega}$
 - \mathfrak{I}^Ω is a metric-changing endofunctor with a specific formula

The metric-changing endofunctor

•
$$\mathfrak{I}^{\Omega}(X, d_X) := (X, \mathcal{U}(W^{\Omega}_X))$$

Maximal subdominant ultrametric U(W_X)

- W/r/t symmetric $W_X: X^2 \to \mathbb{R}_{\geq 0}$ w/ $W_X(x,x) \equiv 0$
- $U(W_X)(x,x') := \min \{ \max_{x=x_0,x_1,...,x_k=x'} W_X(x_j,x_{j+1}) \}$
- I.e., the maximal hop in a minimal path between points
- Algorithm provided in §VI.C of Rammal, Toulouse, and Virasoro, *Rev. Mod. Phys.* 58, 765 (1986)
- $W_X^{\Omega}(x, x') := 0$ if x = x', otherwise equals inf $\{\lambda > 0 : \exists \omega \in \Omega, \phi \in \hom_{\mathcal{M}}(\lambda \cdot \omega, X) \text{ s.t. } \{x, x'\} \subset \phi(\lambda \cdot \omega)\}$
- Example: for $\Omega = \{\Delta_m(\delta)\}$ we have $W_X^{\Omega}(x, x') = \inf \{\lambda > 0 : \exists X_m \subset X \text{ s.t. } |X_m| = m \land \{x, x'\} \subset X_m \land d_X|_{X_m} \le \lambda \delta \}$
 - Find a min-diameter subset with *m* elements including *x* and *x'*
 - Generally have to use heuristics

Remarks on density proxies and hierarchical clustering

· Density estimates in high dimensions will generally be poor

- Functoriality is a more reasonable desideratum for clustering than density recognition
- This point of view supports "functorial NLDR" and simple $\boldsymbol{\Omega}$
- Theorem: \mathfrak{R} is the unique hierarchical clustering functor on \mathcal{M}^{gen} that satisfies a few mild/natural restrictions
 - More options on *M^{inj}*
 - Let θ^m_X(r) be the partition of (X, d_X) w/r/t ~^m_r. Now *^{fm}* : M^{inj} → P defined by *^{fm}*(X, d_X) := (X, θ^m_X) (and the trivial action on maps) works; clustering amounts to treating small numbers of co-located "outliers" as singletons
 - A particularly useful class of hierarchical clustering functors is furnished by taking $\mathfrak{R}^{\Omega} := \mathfrak{R} \circ \mathfrak{I}^{\Omega}$, e.g., hierarchical-functorial analogue of DBSCAN

Functorial cluster embedding

- Generalization from TPE to FCE is significant yet easy
- Given a hierarchical clustering functor $\mathfrak{R}^{\Omega} : \mathcal{M}^{inj} \to \mathcal{P}$, to elegantly embed (X, d_X) in some \mathbb{R}^n we merely need to:
 - apply \mathfrak{I}^{Ω} to (X, d_X) ;
 - perform TPE
- FCE preserves \mathfrak{R}^{Ω} since TPE preserves \mathfrak{R}
 - I.e., FCE simply amounts to the observation that TPE is essentially functorial over \mathcal{M}^{gen} along with the application of the endofunctor \mathfrak{I}^{Ω}
- Example: $\Omega = \{\Delta_m(\delta)\}$ leads to a hierarchical-functorial analogue of "DBSCAN-tree preserving embedding" likely to enhance the utility of TPE

Implementing FCE

- A practical implementation of FCE requires:
 - An algorithm taking the original metric d_X as input and producing a symmetric function of the form W^Ω as output;
 - 2) An algorithm for computing the subdominant ultrametric;
 - 3) An implementation of TPE itself
- Items 2 & 3 are straightforward/available, though existing implementation of TPE restricts embedding to \mathbb{R}^2
- Item 1 will generally be NP-hard for a nontrivial choice of Ω
 - Constrain Ω
 - Accept approximate solutions (already doing this for TPE)

Implementation notes for $\Omega = \{\Delta_m(\delta)\}$

- For m = 3 we can avoid any bottleneck:
 - $W_X^{\Omega}(x, x') = \inf \{\lambda > 0 : \exists x'' \in X \text{ s.t. } d_X|_{\{x, x', x''\}} \le \lambda \delta \}$ takes $O(n^3)$ steps-same as subdominant ultrametric and TPE
- For m > 3, let H_k(x) denote the k points closest to x, including x itself, and approximate W^Ω(x, x') for m/2 ≥ k = Θ(m) by restricting consideration from X to H_k(x) ∪ H_k(x') in formation of m-element min-diameter sets
 - Helpful to precompute a hash table of sets of indices corresponding to *m*-element subsets of H_k(x) ∪ H_k(x')
- Can employ greedy approximations, particularly for $X \subset \mathbb{R}^N$
- Some other more esoteric tactics might be considered

Conclusion

- Provides principled basis for developing practical instantiations: focus on approximation of nice algorithms instead of efficient but ad hoc constructions
- Category theory can help us recognize (what) a good thing (is) when we see it...
- ...and we can miss good things by not paying attention to the categorical context

Thanks!

steve.huntsman@baesystems.com https://bit.ly/35DMQjr

