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Overview: TPE + functorial clustering = FCE

• Dimensionality reduction is a basic and ubiquitous approach
for understanding high-dimensional data
• Linear archetype: principal components analysis (PCA)
• Most nonlinear dimensionality reduction (NLDR) techniques

are ad hoc, even when motivated by or using theorems

• The NLDR technique of tree-preserving embedding (TPE)
turns out to be functorial

• A category-theoretical classification of hierarchical clustering
schemes gives a recipe for transforming TPE into essentially
all functorial NLDR methods under the aegis of functorial
cluster embedding (FCE)
• Carlsson, G. and Mémoli, F. JMLR 11, 1425 (2010); Found.

Comp. Math. 13, 221 (2013)

• Preceding two bullets essentially the only original material here
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The quintessential NLDR example

• 2D map results from applying NLDR to a globe surface in 3D
• Different map projections suit varying purposes...
• ...but tradeoffs are inevitable: e.g., topological information (a

nontrivial homology class) must be lost unless the embedding
has a point at infinity
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Tree preserving embedding

• For details see Shieh, A. D., et al. PNAS 108, 16916 (2011)

• TPE preserves the single-linkage dendrogram
• = hierarchical clustering of points resulting from merging

cluster pairs with minimum nearest-neighbor distance

• How TPE does it:
• Constrained optimization preserves the SL dendrogram

• Acts directly on dissimilarities: no need for vector data

• Infeasible in practice, but a good greedy approximation exists
• Use an optimal rigid transformation of prior embedding

instead of reembedding at each step
• O(n3) runtime, typical for the class of NLDR algorithms

Images from Shieh et al.
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TPE examples from Shieh et al.

protein sequence dissimilarity (colors/labels for organism domains)

radar signals (∈ R34, colors/labels for signal quality)

images of handwritten digits (colors/labels for digits themselves)
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Relevant categories (see Carlsson and Mémoli)

• Miso ⊂Minj ⊂Mgen: objects are finite metric spaces
(X , dX ); morphisms are isometries/injective
distance-nonincreasing maps

• C (“standard clustering algorithm outputs”): objects are
(X ,PX ), where PX is a partition of X into clusters; morphisms
are f : X → Y s.t. PX refines f ∗(PY ) := {f −1(B) : B ∈ PY }

• P (“hierarchical clustering algorithm outputs”): objects are
persistent sets (X , θX ) and morphisms are
f : (X , θX )→ (Y , θY ) s.t. θX (r) ≤ f ∗(θY (r)) for all r
• Here X is a finite set and θX is a map from R≥0 to the set of

partitions of X s.t. i) r ≤ s ⇒ θX (r) ≤ θX (s) and ii) for all
r ≥ 0 there exists ε > 0 s.t. θX (r ′) = θX (r) for all
r ≤ r ′ ≤ r + ε. A dendrogram is a persistent set (X , θX ) s.t.
θX (t) consists of a single cluster for some t
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Relevant equivalence relations

• For x , x ′ ∈ (X , dX ) and r ≥ 0:
• x ∼r x

′ iff there exists a sequence x = x0, x1, . . . , xk = x ′ of
points in X s.t. dX (xj , xj+1) ≤ r for 0 ≤ j ≤ k − 1;

• more generally, for any m ∈ Z≥0, an equivalence relation ∼m
r

obtained by keeping equivalence classes under ∼r of cardinality
≥ m and associating any unaccounted-for points to singleton
equivalence classes;

• For B,B ′ ∈ PX , R ≥ 0 and a linkage function ` defining the
distance between clusters, B ∼`,R B ′ iff there exists a
sequence B = B0,B1, . . . ,Bk = B ′ of clusters in PX s.t.
`(Bj ,Bj+1) ≤ R for 0 ≤ j ≤ k − 1.
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Relevant functors

• Standard clustering functor C : (Miso ,Minj ,Mgen)→ C
• Functoriality amounts to (X , dX )

f−→ (Y , dY )
C−→ (Y ,PY ) =

(X , dX )
C−→ (X ,PX )

C(f )−→ (Y ,PY ) w/ typical C(f ) = f in Set

• Vietoris-Rips or single-linkage clustering functor Rr :M→ C
• Rr (X , dX ) := (X ,PX (r)), where PX (r) is the partition for ∼r

• Rr (f : X → Y ) given by regarding f as a morphism from
(X ,PX (r)) to (Y ,PY (r)) in C

• Vietoris-Rips hierarchical clustering functor R :Mgen → P
• R(X , dX ) := (X , θX ) and where θX (r) = PX (r) as above
• R(f : X → Y ) given by regarding f as a morphism from

(X , θX (r)) to (Y , θY (r)) in P
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Representable/excisive standard clustering functors

• More general class of standard clustering functors than Rr

• Defined in terms of a family Ω of finite metric spaces

• CΩ :M→ C is given by CΩ(X , dX ) := (X ,PX )
• Here x and x ′ belong to the same cluster of PX iff there exists

a sequence x = x0, x1, . . . , xk = x ′ of points in the cluster,
along with {ωj}kj=1 ⊆ Ω, (αj , βj) ∈ ω2

j , and fj ∈ homM(ωj ,X )
for 0 ≤ j ≤ k − 1 s.t. fj(αj) = xj−1 and fj(βj) = xj .

• Example: Rr = C{∆2(r)}, where ∆m(r) denotes the metric
space with m points each at distance r from each other

• Theorem: |Ω| <∞⇒ CΩ = R1 ◦ IΩ

• IΩ is a metric-changing endofunctor with a specific formula

• Uniqueness results also highlight the special nature of Rr
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The metric-changing endofunctor

• IΩ(X , dX ) := (X ,U(WΩ
X ))

• Maximal subdominant ultrametric U(WX )
• W/r/t symmetric WX : X 2 → R≥0 w/ WX (x , x) ≡ 0
• U(WX )(x , x ′) := min {maxx=x0,x1,...,xk=x′ WX (xj , xj+1)}
• I.e., the maximal hop in a minimal path between points
• Algorithm provided in §VI.C of Rammal, Toulouse, and

Virasoro, Rev. Mod. Phys. 58, 765 (1986)

• WΩ
X (x , x ′) := 0 if x = x ′, otherwise equals

inf {λ > 0 : ∃ω ∈ Ω, φ ∈ homM(λ · ω,X ) s.t. {x , x ′} ⊂ φ(λ · ω)}
• Example: for Ω = {∆m(δ)} we have WΩ

X (x , x ′) =
inf {λ > 0 : ∃Xm ⊂ X s.t. |Xm| = m ∧ {x , x ′} ⊂ Xm ∧ dX |Xm ≤ λδ}

• Find a min-diameter subset with m elements including x and x ′

• Generally have to use heuristics
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Remarks on density proxies and hierarchical clustering

• Density estimates in high dimensions will generally be poor
• Functoriality is a more reasonable desideratum for clustering

than density recognition
• This point of view supports “functorial NLDR” and simple Ω

• Theorem: R is the unique hierarchical clustering functor on
Mgen that satisfies a few mild/natural restrictions
• More options on Minj

• Let θmX (r) be the partition of (X , dX ) w/r/t ∼m
r . Now

Hm :Minj → P defined by Hm(X , dX ) := (X , θmX ) (and the
trivial action on maps) works; clustering amounts to treating
small numbers of co-located “outliers” as singletons

• A particularly useful class of hierarchical clustering functors is
furnished by taking RΩ := R ◦ IΩ, e.g., hierarchical-functorial
analogue of DBSCAN
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Functorial cluster embedding

• Generalization from TPE to FCE is significant yet easy

• Given a hierarchical clustering functor RΩ :Minj → P, to
elegantly embed (X , dX ) in some Rn we merely need to:
• apply IΩ to (X , dX );
• perform TPE

• FCE preserves RΩ since TPE preserves R
• I.e., FCE simply amounts to the observation that TPE is

essentially functorial over Mgen along with the application of
the endofunctor IΩ

• Example: Ω = {∆m(δ)} leads to a hierarchical-functorial
analogue of “DBSCAN-tree preserving embedding” likely to
enhance the utility of TPE
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Implementing FCE

• A practical implementation of FCE requires:

1) An algorithm taking the original metric dX as input and
producing a symmetric function of the form W Ω as output;

2) An algorithm for computing the subdominant ultrametric;
3) An implementation of TPE itself

• Items 2 & 3 are straightforward/available, though existing
implementation of TPE restricts embedding to R2

• Item 1 will generally be NP-hard for a nontrivial choice of Ω
• Constrain Ω
• Accept approximate solutions (already doing this for TPE)
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Implementation notes for Ω = {∆m(δ)}

• For m = 3 we can avoid any bottleneck:
• W Ω

X (x , x ′) = inf
{
λ > 0 : ∃x ′′ ∈ X s.t. dX |{x,x′,x′′} ≤ λδ

}
takes O(n3) steps–same as subdominant ultrametric and TPE

• For m > 3, let Hk(x) denote the k points closest to x ,
including x itself, and approximate WΩ(x , x ′) for
m/2 ≥ k = Θ(m) by restricting consideration from X to
Hk(x) ∪ Hk(x ′) in formation of m-element min-diameter sets
• Helpful to precompute a hash table of sets of indices

corresponding to m-element subsets of Hk(x) ∪ Hk(x ′)

• Can employ greedy approximations, particularly for X ⊂ RN

• Some other more esoteric tactics might be considered
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Conclusion

• Provides principled basis for developing practical
instantiations: focus on approximation of nice algorithms
instead of efficient but ad hoc constructions

• Category theory can help us recognize (what) a good thing
(is) when we see it...

• ...and we can miss good things by not paying attention to the
categorical context

Thanks!
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