
Hierarchical Ontology
and Knowledge Representation

Noah Chrein

University of Maryland

October 26, 2019

Ontology

In philosophy, ontology is “a collection of things that exist”

Set

Graph

Category

Even this list!

Ontology

In philosophy, ontology is “a collection of things that exist”

Set

Graph

Category

Even this list!

Ontology

In philosophy, ontology is “a collection of things that exist”

Set

Graph

Category

Even this list!

Olog

David Spivak’s idea of an Ontological Log

Categories as a database to house arbitrary information

Picture taken from [OLOG]

Olog

David Spivak’s idea of an Ontological Log
Categories as a database to house arbitrary information

Picture taken from [OLOG]

Olog

David Spivak’s idea of an Ontological Log
Categories as a database to house arbitrary information

Picture taken from [OLOG]

Goals

Goal

The goal is to define an rigorous and expressive notion of
Ontology

This includes:

A means of organizing data

Alice

Me Bob

friendfriend

can contact

Goals

Goal

The goal is to define an rigorous and expressive notion of
Ontology

This includes:

A means of organizing data

A means of elaborating on data

Goals

Goal

The goal is to define an rigorous and expressive notion of
Ontology

This includes:

A means of organizing data

A means of elaborating on data

A means of recovering data from elaborations

Alice

Me Bob

friendfriend

can contact

σ

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Other ontologies

In philosophy, Ontology is “a collection of things that exist”

Categories count as ontologies. But so do:

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors ∆op → Set

∗ → Set

G op → Set

∆op → Set

Gop → Set

Goal 1

An Ontology should organize data

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)
at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)
at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)
at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)

at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)
at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Basic Ontologies

Basic Ontology

A basic ontology is a functor Σ : ∆op → C. Where

∆ is a small category

C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

∆ is the ”Organizational Shape”

C is the ”Propositional Category”

(For example σ ∈ Σ[2] is a statement when C = Set)
at the end of the day, the “data” is just an element of a set

Hence the name “basic”: just a framework

Problem with composition

For mathematical concepts, composition is usually well defined

But for more abstract concepts:

Alice

Me Bob

friendfriend

we might be at a loss

This is fine in a Simplicial Set

Problem with composition

For mathematical concepts, composition is usually well defined
But for more abstract concepts:

Alice

Me Bob

friendfriend

we might be at a loss

This is fine in a Simplicial Set

Problem with composition

For mathematical concepts, composition is usually well defined
But for more abstract concepts:

Alice

Me Bob

friendfriend

we might be at a loss

This is fine in a Simplicial Set

Problem with composition in general

If we give a “reasonable” composition:

Alice

Me Bob

friendfriend

can contact

We can represent this by a formal 2-simplex
but it is still somewhat ill defined

Problem with composition in general

If we give a “reasonable” composition:

Alice

Me Bob

friendfriend

can contact

We can represent this by a formal 2-simplex

but it is still somewhat ill defined

Problem with composition in general

If we give a “reasonable” composition:

Alice

Me Bob

friendfriend

can contact

We can represent this by a formal 2-simplex
but it is still somewhat ill defined

Problem with definition in general

Alice

Me Bob

friendfriend

can contact

Not just the composition is undefined:

objects are undefined (who am I?)

relations are undefined (what does “friend of” mean)

composites are undefined
(how does “friend of a friend” imply “can contact”)

Problem with definition in general

Alice

Me Bob

friendfriend

can contact

Not just the composition is undefined:

objects are undefined (who am I?)

relations are undefined (what does “friend of” mean)

composites are undefined
(how does “friend of a friend” imply “can contact”)

Problem with definition in general

Alice

Me Bob

friendfriend

can contact

Not just the composition is undefined:

objects are undefined (who am I?)

relations are undefined (what does “friend of” mean)

composites are undefined
(how does “friend of a friend” imply “can contact”)

Problem with definition in general

Alice

Me Bob

friendfriend

can contact

Not just the composition is undefined:

objects are undefined (who am I?)

relations are undefined (what does “friend of” mean)

composites are undefined
(how does “friend of a friend” imply “can contact”)

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon myself

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon myself

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon myself

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon Alice

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon Alice

Elaboration of Objects

As humans, we have the ability to elaborate on concepts

I can elaborate upon Alice

Elaboration of Relations

As humans, we have the ability to elaborate on concepts

I can elaborate upon ”Friend”

Me
friend→ Alice

Elaboration of Composites

As humans, we have the ability to elaborate on concepts
Consider the proposed composition

Alice

Me Bob

friendfriend

can contact

Elaboration of Composites

Elaboration of Composites

Expansion: Abstract → Concrete

“Abstract:”

Alice

Me Bob

friendfriend

can contact

“Concrete:”

Alice

Me Bob

callemail

can contact

Concrete ideas are part of these elaborations.

Elaborations are subconcepts which “define” the idea

Expansion: Abstract → Concrete

“Abstract:”

Alice

Me Bob

friendfriend

can contact

“Concrete:”

Alice

Me Bob

callemail

can contact

Concrete ideas are part of these elaborations.

Elaborations are subconcepts which “define” the idea

Expansion: Abstract → Concrete

“Abstract:”

Alice

Me Bob

friendfriend

can contact

“Concrete:”

Alice

Me Bob

callemail

can contact

Concrete ideas are part of these elaborations.

Elaborations are subconcepts which “define” the idea

Expansion: Abstract → Concrete

“Abstract:”

Alice

Me Bob

friendfriend

can contact

“Concrete:”

Alice

Me Bob

callemail

can contact

Concrete ideas are part of these elaborations.

Elaborations are subconcepts which “define” the idea

Open Sets: Global → Local

This is not a new idea at all:

Spaces → Open Sets
We can “expand” a space to its category of open sets.

O : Topop → Cat

Goal 2

To define a process of elaborating upon data

Open Sets: Global → Local

This is not a new idea at all: Spaces → Open Sets

We can “expand” a space to its category of open sets.

O : Topop → Cat

Goal 2

To define a process of elaborating upon data

Open Sets: Global → Local

This is not a new idea at all: Spaces → Open Sets
We can “expand” a space to its category of open sets.

O : Topop → Cat

Goal 2

To define a process of elaborating upon data

Open Sets: Global → Local

This is not a new idea at all: Spaces → Open Sets
We can “expand” a space to its category of open sets.

O : Topop → Cat

Goal 2

To define a process of elaborating upon data

Ontological Expansion: Open Sets

Let’s rework this expansion

, for simplicity:
Consider the graph of topological spaces (bounded in cardinality)

For each space X, let O(X) = {U open in X ; i : U → U ′}
For a map f : X → Y let O(f) = {f |U : U → V |f (U) ⊆ V }

Ontological Expansion: Open Sets

Let’s rework this expansion, for simplicity:
Consider the graph of topological spaces (bounded in cardinality)

For each space X, let O(X) = {U open in X ; i : U → U ′}
For a map f : X → Y let O(f) = {f |U : U → V |f (U) ⊆ V }

Ontological Expansion: Open Sets

Let’s rework this expansion, for simplicity:
Consider the graph of topological spaces (bounded in cardinality)

For each space X, let O(X) = {U open in X ; i : U → U ′}

For a map f : X → Y let O(f) = {f |U : U → V |f (U) ⊆ V }

Ontological Expansion: Open Sets

Let’s rework this expansion, for simplicity:
Consider the graph of topological spaces (bounded in cardinality)

For each space X, let O(X) = {U open in X ; i : U → U ′}
For a map f : X → Y let O(f) = {f |U : U → V |f (U) ⊆ V }

Ontological Expansion: Open Sets

Let’s rework this expansion, for simplicity:
Consider the graph of topological spaces (bounded in cardinality)

For each space X, let O(X) = {U open in X ; i : U → U ′}
For a map f : X → Y let O(f) = {f |U : U → V |f (U) ⊆ V }

Ontological Expansion: Open Sets

Note that O(f) is not a natural transformation:

O(X) is a sub-graph of Top, call this a 0-submorphism

O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into “submorphisms”

Ontological Expansion: Open Sets

Note that O(f) is not a natural transformation:

O(X) is a sub-graph of Top, call this a 0-submorphism

O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into “submorphisms”

Ontological Expansion: Open Sets

Note that O(f) is not a natural transformation:

O(X) is a sub-graph of Top, call this a 0-submorphism

O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into “submorphisms”

Ontological Expansion: Open Sets

Note that O(f) is not a natural transformation:

O(X) is a sub-graph of Top, call this a 0-submorphism

O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into “submorphisms”

Ontological Expansion: Open Sets

Note that O(f) is not a natural transformation:

O(X) is a sub-graph of Top, call this a 0-submorphism

O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into “submorphisms”

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set

, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and

G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

A graph Σ is actually a functor Σ : G op → Set, a “basic ontology”

for each object of G = {0
s
⇒ 1
t
}, let’s choose a subcategory:

G0 = {0
s
⇒ 1
t
} and G1 = {1}

These come with inclusions J0 : G0 → G and J1 : G1 → G

We can restrict our graph to these subcategories:

G op
n

G op

Set

Jopn

Σ

Σ ◦ Jop0 is the graph

Σ ◦ Jop1 is the edges

Graph Submorphisms

Graph Submorphism

an n-submorphism of a graph Σ : G op → Set is a pair Sn = (In, η).

In : G op
n → Set, a functor

η : In → Σ ◦ Jopn , a natural transformation

G op
n

G op

Set

Jopn

In Σ

η
0-submorphisms are the subgraphs

1-submorphisms are subsets of edges

n-submorphisms form a category sm(Σ)[n]

Graph Submorphisms

Graph Submorphism

an n-submorphism of a graph Σ : G op → Set is a pair Sn = (In, η).

In : G op
n → Set, a functor

η : In → Σ ◦ Jopn , a natural transformation

G op
n

G op

Set

Jopn

In Σ

η

0-submorphisms are the subgraphs

1-submorphisms are subsets of edges

n-submorphisms form a category sm(Σ)[n]

Graph Submorphisms

Graph Submorphism

an n-submorphism of a graph Σ : G op → Set is a pair Sn = (In, η).

In : G op
n → Set, a functor

η : In → Σ ◦ Jopn , a natural transformation

G op
n

G op

Set

Jopn

In Σ

η
0-submorphisms are the subgraphs

1-submorphisms are subsets of edges

n-submorphisms form a category sm(Σ)[n]

Graph Submorphisms

Graph Submorphism

an n-submorphism of a graph Σ : G op → Set is a pair Sn = (In, η).

In : G op
n → Set, a functor

η : In → Σ ◦ Jopn , a natural transformation

G op
n

G op

Set

Jopn

In Σ

η
0-submorphisms are the subgraphs

1-submorphisms are subsets of edges

n-submorphisms form a category sm(Σ)[n]

Graph Submorphisms

Graph Submorphism

an n-submorphism of a graph Σ : G op → Set is a pair Sn = (In, η).

In : G op
n → Set, a functor

η : In → Σ ◦ Jopn , a natural transformation

G op
n

G op

Set

Jopn

In Σ

η
0-submorphisms are the subgraphs

1-submorphisms are subsets of edges

n-submorphisms form a category sm(Σ)[n]

General Submorphisms

For a general basic ontology Σ : ∆op → C we do the same

The “choice of subcategories” ∆n ↪→ ∆ is a functor

[] : ∆→ Fun(∗,∆)[2]

∗

∆k ∆n

∆

k n

Jk

[f]

Jn

(for f : k → n ∈ ∆)

General Submorphisms

For a general basic ontology Σ : ∆op → C we do the same
The “choice of subcategories” ∆n ↪→ ∆ is a functor

[] : ∆→ Fun(∗,∆)[2]

∗

∆k ∆n

∆

k n

Jk

[f]

Jn

(for f : k → n ∈ ∆)

General Submorphisms

For a general basic ontology Σ : ∆op → C we do the same
The “choice of subcategories” ∆n ↪→ ∆ is a functor

[] : ∆→ Fun(∗,∆)[2]

∗

∆k ∆n

∆

k n

Jk

[f]

Jn

(for f : k → n ∈ ∆)

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology Σ : ∆op → C is a pair
Sn = (In, η).

In : ∆op
n → C a functor

η : In → Σ ◦ Jopn a natural transformation

∆op
n

∆op

C

Jopn

In Σ

η

sm(Σ)[n] forms an entire category (Fun(∆op
n ,C)/Σ ◦ Jopn)

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology Σ : ∆op → C is a pair
Sn = (In, η).

In : ∆op
n → C a functor

η : In → Σ ◦ Jopn a natural transformation

∆op
n

∆op

C

Jopn

In Σ

η

sm(Σ)[n] forms an entire category

(Fun(∆op
n ,C)/Σ ◦ Jopn)

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology Σ : ∆op → C is a pair
Sn = (In, η).

In : ∆op
n → C a functor

η : In → Σ ◦ Jopn a natural transformation

∆op
n

∆op

C

Jopn

In Σ

η

sm(Σ)[n] forms an entire category (Fun(∆op
n ,C)/Σ ◦ Jopn)

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain

But this is not yet rigorous.
Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain
But this is not yet rigorous.

Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain
But this is not yet rigorous.
Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain
But this is not yet rigorous.
Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain
But this is not yet rigorous.
Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

faces of submorphisms

We draw 1-submorphisms as if there is a domain and codomain
But this is not yet rigorous.
Informally: S0 is a domain of S1 if

s ∈ S1 =⇒ dom(s) ∈ S0

The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]

Formal Faces

for f : k → n ∈ ∆, we say Sk is an f-face of Sn if:

n∗(Sn) n∗(J∗n(Σ))

k∗(Sk) k∗(J∗k (Σ))

n∗(ηn)

i Σ∗(f)

k∗(ηk)

Inuitively, this diagram is saying:
”Restrict the elements of Sn to the n-elements σn ∈ Sn ∩∆[n] and
check that f (σn) ∈ Sk”

Formal Faces

We reformulate our criteria as a pullback:

f̂ (Sn) sm(Σ)[k]

Σ∗(f) ◦1 n
∗(Sn)/Qk Qk

y
k∗

U

(Where Qk = Cat(∗,C)/k∗(J∗k (Σ))

forgetting about the details: we get a subcategory

f̂ (Sn) ↪→ sm(Σ)[k]

This pullback allows us to prove basic properties of sm

Formal Faces

We reformulate our criteria as a pullback:

f̂ (Sn) sm(Σ)[k]

Σ∗(f) ◦1 n
∗(Sn)/Qk Qk

y
k∗

U

(Where Qk = Cat(∗,C)/k∗(J∗k (Σ))

forgetting about the details: we get a subcategory

f̂ (Sn) ↪→ sm(Σ)[k]

This pullback allows us to prove basic properties of sm

Formal Faces

We reformulate our criteria as a pullback:

f̂ (Sn) sm(Σ)[k]

Σ∗(f) ◦1 n
∗(Sn)/Qk Qk

y
k∗

U

(Where Qk = Cat(∗,C)/k∗(J∗k (Σ))

forgetting about the details: we get a subcategory

f̂ (Sn) ↪→ sm(Σ)[k]

This pullback allows us to prove basic properties of sm

sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])

(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)

sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])
(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)

sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])
(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)

sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])
(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)

sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])
(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)

sm is a functor

Moreover:

Theorem

sm : Fun(∆op,C)→ Lax(∆op,CatP) is a functor

That is, from any basic ontology Σ,
we get the ”expansions”, the submorphisms sm(Σ)

Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T) O(f (s)) ∈ f̂ (O(s))

Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T) O(f (s)) ∈ f̂ (O(s))

Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T) O(f (s)) ∈ f̂ (O(s))

Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T)

O(f (s)) ∈ f̂ (O(s))

Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T) O(f (s)) ∈ f̂ (O(s))

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set

, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set, but sm(T) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)

Ontological Expansion in C = Set

In set, we have:

“Trivial” expansion tr : Fun(∆op,Set)→ Lax(∆op,CatP)

“Real” expansion functor
sm : Fun(∆op,Set)→ Lax(∆op,CatP)

two basic ontologies Σ, T : ∆op → Set

Ontological Expansion

an Ontological Expansion is a natural transformation

O : tr(Σ)→ sm(T)

Ontological Expansion in C = Set

In set, we have:

“Trivial” expansion tr : Fun(∆op,Set)→ Lax(∆op,CatP)

“Real” expansion functor
sm : Fun(∆op,Set)→ Lax(∆op,CatP)

two basic ontologies Σ, T : ∆op → Set

Ontological Expansion

an Ontological Expansion is a natural transformation

O : tr(Σ)→ sm(T)

Ontological Expansion in C = Set

In set, we have:

“Trivial” expansion tr : Fun(∆op,Set)→ Lax(∆op,CatP)

“Real” expansion functor
sm : Fun(∆op,Set)→ Lax(∆op,CatP)

two basic ontologies Σ, T : ∆op → Set

Ontological Expansion

an Ontological Expansion is a natural transformation

O : tr(Σ)→ sm(T)

Ontological Expansion in C = Set

In set, we have:

“Trivial” expansion tr : Fun(∆op,Set)→ Lax(∆op,CatP)

“Real” expansion functor
sm : Fun(∆op,Set)→ Lax(∆op,CatP)

two basic ontologies Σ, T : ∆op → Set

Ontological Expansion

an Ontological Expansion is a natural transformation

O : tr(Σ)→ sm(T)

Current Work

What is tr : Fun(∆op,C)→ Lax(∆op,CatP) for general C?

The answer might lie in the 3rd goal

Goal 3

Reconstruct data from it’s elaborations

we’re going to take cues from Grothendieck Topologies

Current Work

What is tr : Fun(∆op,C)→ Lax(∆op,CatP) for general C?
The answer might lie in the 3rd goal

Goal 3

Reconstruct data from it’s elaborations

we’re going to take cues from Grothendieck Topologies

Current Work

What is tr : Fun(∆op,C)→ Lax(∆op,CatP) for general C?
The answer might lie in the 3rd goal

Goal 3

Reconstruct data from it’s elaborations

we’re going to take cues from Grothendieck Topologies

Goal: Sheaf Theory of Ontologies

A grothendiek topology should be the first example of an ontology

Category to organize concepts

Coverings are elaborations

Sheaf condition reconstructs data

Goal: Sheaf Theory of Ontologies

A grothendiek topology should be the first example of an ontology

Category to organize concepts

Coverings are elaborations

Sheaf condition reconstructs data

Goal: Sheaf Theory of Ontologies

A grothendiek topology should be the first example of an ontology

Category to organize concepts

Coverings are elaborations

Sheaf condition reconstructs data

Goal: Sheaf Theory of Ontologies

A grothendiek topology should be the first example of an ontology

Category to organize concepts

Coverings are elaborations

Sheaf condition reconstructs data

Current Work

“a covering of a covering is a covering”

→“An expansion of an expansion is an expansion”
→ composition of expansion

From O : tr(Σ)→ sm(Σ′) and O ′ : tr(Σ′)→ sm(Σ′′)

we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)

Current Work

“a covering of a covering is a covering”
→“An expansion of an expansion is an expansion”

→ composition of expansion

From O : tr(Σ)→ sm(Σ′) and O ′ : tr(Σ′)→ sm(Σ′′)

we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)

Current Work

“a covering of a covering is a covering”
→“An expansion of an expansion is an expansion”
→ composition of expansion

From O : tr(Σ)→ sm(Σ′) and O ′ : tr(Σ′)→ sm(Σ′′)

we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)

Current Work

“a covering of a covering is a covering”
→“An expansion of an expansion is an expansion”
→ composition of expansion

From O : tr(Σ)→ sm(Σ′) and O ′ : tr(Σ′)→ sm(Σ′′)

we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)

Current Work

“a covering of a covering is a covering”
→“An expansion of an expansion is an expansion”
→ composition of expansion

From O : tr(Σ)→ sm(Σ′) and O ′ : tr(Σ′)→ sm(Σ′′)

we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)

Composition of expansions

Conjecture

sm: (∆op/2− Cat)Lax → (∆op/2− Cat)Lax

Composition of expansions

Conjecture

sm: (∆op/2− Cat)Lax → (∆op/2− Cat)Lax

Composition of expansions

Conjecture

sm: (∆op/2− Cat)Lax → (∆op/2− Cat)Lax

Composition of expansions

Conjecture

sm: (∆op/2− Cat)Lax → (∆op/2− Cat)Lax

Composition of expansions

Conjecture

sm: (∆op/2− Cat)Lax → (∆op/2− Cat)Lax

Current Work

tr(Σ)
O→ sm(Σ′)

ι→ sm(tr(Σ′))
sm(O′)→ sm(sm(Σ′′))

µ→ sm(Σ′′)

this gives some conditions for tr

we have a natural i : tr(Σ′)→ sm(tr(Σ′))

seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

[(∆op/2− Cat)Lax]sm

Current Work

tr(Σ)
O→ sm(Σ′)

ι→ sm(tr(Σ′))
sm(O′)→ sm(sm(Σ′′))

µ→ sm(Σ′′)

this gives some conditions for tr

we have a natural i : tr(Σ′)→ sm(tr(Σ′))

seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

[(∆op/2− Cat)Lax]sm

Current Work

tr(Σ)
O→ sm(Σ′)

ι→ sm(tr(Σ′))
sm(O′)→ sm(sm(Σ′′))

µ→ sm(Σ′′)

this gives some conditions for tr

we have a natural i : tr(Σ′)→ sm(tr(Σ′))

seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

[(∆op/2− Cat)Lax]sm

Current Work

tr(Σ)
O→ sm(Σ′)

ι→ sm(tr(Σ′))
sm(O′)→ sm(sm(Σ′′))

µ→ sm(Σ′′)

this gives some conditions for tr

we have a natural i : tr(Σ′)→ sm(tr(Σ′))

seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

[(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies

2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions

2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions

2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

Proposed Definition: Ontology

[(∆op/2− Cat)Lax]sm

Organize data: Objects are Basic Ontologies 2�

Elaborations: Morphism are Ontological Expansions 2�

A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax]sm

References

intuition:
[OLOG] “OLOGS: A Categorical Framework for Knowledge
Representation” David I. Spivak, Robert E. Kent

(higher) category theory:
[1] ”Higher Categories, Higher Operads” Leinster
[2] ”Higher Topos Theory” Lurie
[3] ”Sheaves in Geometry and Logic” Maclane, Moerdijk
[4] ”Categories for the working mathematician” Maclane
[5] ”The Stack Of Microlocal Presheaves” Waschkies

http://www.numdam.org/article/BSMF_2004__132_3_397_0.pdf

