Hierarchical Ontology and Knowledge Representation

Noah Chrein

University of Maryland

October 26, 2019

In philosophy, ontology is "a collection of things that exist"

In philosophy, ontology is "a collection of things that exist"

- Set
- Graph
- Category

In philosophy, ontology is "a collection of things that exist"

- Set
- Graph
- Category
- Even this list!

David Spivak's idea of an Ontological Log

David Spivak's idea of an Ontological Log Categories as a database to house arbitrary information

David Spivak's idea of an Ontological Log Categories as a database to house arbitrary information

Picture taken from [OLOG]

э

Goal

The goal is to define an rigorous and expressive notion of **Ontology**

This includes:

A means of organizing data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Goal

The goal is to define an rigorous and expressive notion of **Ontology**

This includes:

- A means of organizing data
- A means of elaborating on data

Goal

The goal is to define an rigorous and expressive notion of **Ontology**

This includes:

- A means of organizing data
- A means of elaborating on data
- A means of recovering data from elaborations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In philosophy, Ontology is "a collection of things that exist"

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Sets

Graphs

Sets

Graphs

Simplicial Sets

Sets

Graphs

Simplicial Sets

Globular Sets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sets

Graphs

Simplicial Sets

Globular Sets

Which are all functors $\Delta^{op} \to \mathfrak{Set}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sets $* \to \mathfrak{Set}$ Graphs Simplicial Sets Globular Sets Which are all functors $\Delta^{op} \to \mathfrak{Set}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sets	$* ightarrow \mathfrak{Set}$
Graphs	$G^{op} ightarrow \mathfrak{Set}$
Simplicial Sets	
Globular Sets	
Which are all functors Δ^{op} —	→ Set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sets	$* ightarrow \mathfrak{Set}$
Graphs	$G^{op} ightarrow \mathfrak{Set}$
Simplicial Sets	$\Delta^{op} o \mathfrak{Set}$
Globular Sets	
Which are all functors Δ^{op} .	ightarrow Set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sets	$* ightarrow \mathfrak{Set}$
Graphs	$G^{op} ightarrow \mathfrak{Set}$
Simplicial Sets	$\Delta^{op} o \mathfrak{Set}$
Globular Sets	$\mathbb{G}^{op} ightarrow \mathfrak{Set}$

Which are all functors $\Delta^{op} \to \mathfrak{Set}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sets	$* ightarrow \mathfrak{Set}$
Graphs	${\mathcal G}^{op} o \mathfrak{Set}$
Simplicial Sets	$\Delta^{op} o \mathfrak{Set}$
Globular Sets	$\mathbb{G}^{op} ightarrow \mathfrak{Set}$
Which are all functors	$\Delta^{op} ightarrow \mathfrak{Set}$

Goal 1

An Ontology should organize data

Basic Ontology

- A basic ontology is a functor $\Sigma:\Delta^{\textit{op}}\to \mathfrak{C}.$ Where
 - \blacksquare Δ is a small category
 - C is an arbitrary (possibly higher) category

Basic Ontology

- A basic ontology is a functor $\Sigma:\Delta^{\textit{op}}\to \mathfrak{C}.$ Where
 - \blacksquare Δ is a small category
 - C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

Basic Ontology

- A basic ontology is a functor $\Sigma:\Delta^{\textit{op}}\to \mathfrak{C}.$ Where
 - \blacksquare Δ is a small category
 - C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Δ is the "Organizational Shape"

Basic Ontology

A basic ontology is a functor $\Sigma : \Delta^{op} \to \mathfrak{C}$. Where

- Δ is a small category
- C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

- Δ is the "Organizational Shape"
- C is the "Propositional Category"

(For example $\sigma \in \Sigma[2]$ is a statement when $\mathfrak{C} = \mathfrak{Set}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic Ontology

A basic ontology is a functor $\Sigma : \Delta^{op} \to \mathfrak{C}$. Where

- Δ is a small category
- C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

- Δ is the "Organizational Shape"
- C is the "Propositional Category"

(For example $\sigma \in \Sigma[2]$ is a statement when $\mathfrak{C} = \mathfrak{Set}$) at the end of the day, the "data" is just an element of a set

Basic Ontology

A basic ontology is a functor $\Sigma : \Delta^{op} \to \mathfrak{C}$. Where

- Δ is a small category
- C is an arbitrary (possibly higher) category

Only organizes data, makes organizational statements

- Δ is the "Organizational Shape"
- C is the "Propositional Category"

(For example $\sigma \in \Sigma[2]$ is a statement when $\mathfrak{C} = \mathfrak{Set}$) at the end of the day, the "data" is just an element of a set

Hence the name "basic": just a framework

For mathematical concepts, composition is usually well defined

(ロ)、(型)、(E)、(E)、 E) の(()

For mathematical concepts, composition is usually well defined But for more abstract concepts:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

we might be at a loss

For mathematical concepts, composition is usually well defined But for more abstract concepts:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If we give a "reasonable" composition:

If we give a "reasonable" composition:

(日) (四) (日) (日) (日)

We can represent this by a formal 2-simplex

If we give a "reasonable" composition:

(日) (四) (日) (日) (日)

We can represent this by a formal 2-simplex but it is still somewhat ill defined

Problem with definition in general

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Not just the composition is undefined:

Problem with definition in general

(日) (四) (日) (日) (日)

Not just the composition is undefined:

objects are undefined (who am I?)
Problem with definition in general

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Not just the composition is undefined:

- objects are undefined (who am I?)
- relations are undefined (what does "friend of" mean)

Problem with definition in general

Not just the composition is undefined:

- objects are undefined (who am I?)
- relations are undefined (what does "friend of" mean)
- composites are undefined (how does "friend of a friend" imply "can contact")

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

As humans, we have the ability to elaborate on concepts

As humans, we have the ability to elaborate on concepts I can elaborate upon myself

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

As humans, we have the ability to elaborate on concepts I can elaborate upon myself

As humans, we have the ability to elaborate on concepts I can elaborate upon Alice

As humans, we have the ability to elaborate on concepts I can elaborate upon Alice

As humans, we have the ability to elaborate on concepts I can elaborate upon Alice

As humans, we have the ability to elaborate on concepts I can elaborate upon "Friend"

 $\mathsf{Me} \stackrel{\mathsf{friend}}{\to} \mathsf{Alice}$

As humans, we have the ability to elaborate on concepts Consider the proposed composition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Elaboration of Composites

Elaboration of Composites

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Concrete ideas are part of these elaborations.
- Elaborations are subconcepts which "define" the idea

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

This is not a new idea at all:

This is not a new idea at all: Spaces \rightarrow Open Sets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is not a new idea at all: Spaces \rightarrow Open Sets We can "expand" a space to its category of open sets.

 $O:\mathfrak{Top}^{op}\to\mathfrak{Cat}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This is not a new idea at all: Spaces \rightarrow Open Sets We can "expand" a space to its category of open sets.

 $O:\mathfrak{Top}^{op}\to\mathfrak{Cat}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Goal 2

To define a process of elaborating upon data

Ontological Expansion: Open Sets

Let's rework this expansion

Let's rework this expansion, for simplicity:

Consider the graph of topological spaces (bounded in cardinality)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let's rework this expansion, for simplicity:

Consider the graph of topological spaces (bounded in cardinality)

• For each space X, let $O(X) = \{U \text{ open in } X; i : U \rightarrow U'\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ontological Expansion: Open Sets

Let's rework this expansion, for simplicity:

Consider the graph of topological spaces (bounded in cardinality)

- For each space X, let $O(X) = \{U \text{ open in } X; i : U \rightarrow U'\}$
- For a map $f: X \to Y$ let $O(f) = \{f|_U : U \to V | f(U) \subseteq V\}$

Ontological Expansion: Open Sets

Let's rework this expansion, for simplicity:

Consider the graph of topological spaces (bounded in cardinality)

- For each space X, let $O(X) = \{U \text{ open in } X; i : U \rightarrow U'\}$
- For a map $f: X \to Y$ let $O(f) = \{f|_U : U \to V | f(U) \subseteq V\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(ロ)、(型)、(E)、(E)、 E) の(()

O(X) is a sub-graph of Top, call this a 0-submorphism

O(X) is a sub-graph of Top, call this a 0-submorphism

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

O(f) is a subset of edges, call this a 1-submorphism

O(X) is a sub-graph of Top, call this a 0-submorphism

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into "submorphisms"

- O(X) is a sub-graph of Top, call this a 0-submorphism
- O(f) is a subset of edges, call this a 1-submorphism

We are expanding our concepts into "submorphisms"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A graph Σ is actually a functor $\Sigma: G^{op} \to \mathfrak{Set}$

A graph Σ is actually a functor $\Sigma: G^{op} \to \mathfrak{Set}$, a "basic ontology"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory:

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$ and

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$ and $G_1 = \{1\}$

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$ and $G_1 = \{1\}$

• These come with inclusions $J_0: G_0 \rightarrow G$ and $J_1: G_1 \rightarrow G$
A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Rightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Rightarrow}} 1\}$ and $G_1 = \{1\}$

• These come with inclusions $J_0: G_0 \to G$ and $J_1: G_1 \to G$ We can restrict our graph to these subcategories:

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Rightarrow}} 1\}$ and $G_1 = \{1\}$

• These come with inclusions $J_0 : G_0 \to G$ and $J_1 : G_1 \to G$ We can restrict our graph to these subcategories:

A graph Σ is actually a functor $\Sigma : G^{op} \to \mathfrak{Set}$, a "basic ontology" • for each object of $G = \{0 \stackrel{s}{\underset{t}{\Longrightarrow}} 1\}$, let's <u>choose</u> a subcategory: $G_0 = \{0 \stackrel{s}{\underset{t}{\Rightarrow}} 1\}$ and $G_1 = \{1\}$

• These come with inclusions $J_0 : G_0 \to G$ and $J_1 : G_1 \to G$ We can restrict our graph to these subcategories:

Graph Submorphism

an n-submorphism of a graph $\Sigma : G^{op} \to \mathfrak{Set}$ is a pair $S_n = (I_n, \eta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$I_n: G_n^{op} \to \mathfrak{Set}$$
, a functor

•
$$\eta: I_n \to \Sigma \circ J_n^{op}$$
, a natural transformation

Graph Submorphism

an n-submorphism of a graph $\Sigma : G^{op} \to \mathfrak{Set}$ is a pair $S_n = (I_n, \eta)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

•
$$I_n: G_n^{op} \to \mathfrak{Set}$$
, a functor
• $\eta: I_n \to \Sigma \circ J_n^{op}$, a natural transformation

Graph Submorphism

an n-submorphism of a graph $\Sigma : G^{op} \to \mathfrak{Set}$ is a pair $S_n = (I_n, \eta)$.

•
$$I_n: G_n^{op} \to \mathfrak{Set}$$
, a functor
• $\eta: I_n \to \Sigma \circ J_n^{op}$, a natural transformation

0-submorphisms are the subgraphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graph Submorphism

an n-submorphism of a graph $\Sigma : G^{op} \to \mathfrak{Set}$ is a pair $S_n = (I_n, \eta)$.

•
$$I_n: G_n^{op} \to \mathfrak{Set}$$
, a functor
• $\eta: I_n \to \Sigma \circ J_n^{op}$, a natural transformation

- 0-submorphisms are the subgraphs
- 1-submorphisms are subsets of edges

Graph Submorphism

an n-submorphism of a graph $\Sigma : G^{op} \to \mathfrak{Set}$ is a pair $S_n = (I_n, \eta)$.

•
$$I_n: G_n^{op} \to \mathfrak{Set}$$
, a functor
• $\eta: I_n \to \Sigma \circ J_n^{op}$, a natural transformation

- 0-submorphisms are the subgraphs
- 1-submorphisms are subsets of edges

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

n-submorphisms form a category $sm(\Sigma)[n]$

For a general basic ontology $\Sigma:\Delta^{op}\to \mathfrak{C}$ we do the same

For a general basic ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$ we do the same The "choice of subcategories" $\Delta_n \hookrightarrow \Delta$ is a functor

$$[]: \Delta \rightarrow \mathit{Fun}(*, \Delta)[2]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a general basic ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$ we do the same The "choice of subcategories" $\Delta_n \hookrightarrow \Delta$ is a functor

$$[]: \Delta \to \mathit{Fun}(*, \Delta)[2]$$

イロト 不得 トイヨト イヨト

3

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$ is a pair $S_n = (I_n, \eta).$ $I_n : \Delta_n^{op} \to \mathfrak{C}$ a functor $\eta : I_n \to \Sigma \circ J_n^{op}$ a natural transformation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$ is a pair $S_n = (I_n, \eta).$ $I_n : \Delta_n^{op} \to \mathfrak{C}$ a functor $\eta : I_n \to \Sigma \circ J_n^{op}$ a natural transformation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $sm(\Sigma)[n]$ forms an entire category

General Submorphisms

n-Submorphism

an n-submorphism of a basic ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$ is a pair $S_n = (I_n, \eta).$ $I_n : \Delta_n^{op} \to \mathfrak{C}$ a functor $\eta : I_n \to \Sigma \circ J_n^{op}$ a natural transformation

 $sm(\Sigma)[n]$ forms an entire category $(Fun(\Delta_n^{op}, \mathfrak{C})/\Sigma \circ J_n^{op})$

We draw 1-submorphisms as if there is a domain and codomain

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We draw 1-submorphisms as if there is a domain and codomain But this is not yet rigorous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We draw 1-submorphisms as if there is a domain and codomain But this is not yet rigorous. Informally: S_0 is <u>a</u> domain of S_1 if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We draw 1-submorphisms as if there is a domain and codomain But this is not yet rigorous. Informally: S_0 is <u>a</u> domain of S_1 if

$$s \in S_1 \implies dom(s) \in S_0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We draw 1-submorphisms as if there is a domain and codomain But this is not yet rigorous. Informally: S_0 is <u>a</u> domain of S_1 if

$$s \in S_1 \implies \textit{dom}(s) \in S_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The 1-submorphism S_1 has an entire subcategory of 0-submorphisms domains

We draw 1-submorphisms as if there is a domain and codomain But this is not yet rigorous. Informally: S_0 is <u>a</u> domain of S_1 if

$$s \in S_1 \implies \textit{dom}(s) \in S_0$$

The 1-submorphism S_1 has an entire subcategory of 0-submorphisms domains

$$\widehat{dom}(S_1) \hookrightarrow sm(\Sigma)[0]$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Formal Faces

Inuitively, this diagram is saying:

"Restrict the elements of S_n to the n-elements $\sigma^n \in S_n \cap \Delta[n]$ and check that $f(\sigma^n) \in S_k$ "

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

We reformulate our criteria as a pullback:

We reformulate our criteria as a pullback:

$$\begin{split} \hat{f}(S_n) & \longleftrightarrow sm(\Sigma)[k] \\ \downarrow & \downarrow^{k^*} \\ \Sigma_*(f) \circ_1 n^*(S_n)/\mathbb{Q}_k & \longleftrightarrow \mathbb{Q}_k \\ (\text{Where } \mathbb{Q}_k = \mathfrak{Cat}(*,\mathfrak{C})/k^*(J_k^*(\Sigma)) \end{split}$$

We reformulate our criteria as a pullback:

forgetting about the details: we get a subcategory

$$\widehat{f}(S_n) \hookrightarrow sm(\Sigma)[k]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This pullback allows us to prove basic properties of sm

$$\hat{f}: sm(\Sigma)[n] \rightarrow P(sm(\Sigma)[k])$$

$\hat{f} : sm(\Sigma)[n] \rightarrow P(sm(\Sigma)[k])$ (where $P : \mathfrak{Cat} \rightarrow \mathfrak{Cat}$ is the subcategory monad)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\hat{f}: sm(\Sigma)[n] \rightarrow P(sm(\Sigma)[k])$

(where $P : \mathfrak{Cat} \to \mathfrak{Cat}$ is the subcategory monad)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $sm(\Sigma)[n]$ are the n-submorphisms

$\hat{f}: sm(\Sigma)[n] \rightarrow P(sm(\Sigma)[k])$

(where $P : \mathfrak{Cat} \to \mathfrak{Cat}$ is the subcategory monad)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $sm(\Sigma)[n]$ are the n-submorphisms
- $sm(\Sigma)[f]$ gives the face sub-categories

$\hat{f}: sm(\Sigma)[n] \rightarrow P(sm(\Sigma)[k])$

(where $P : \mathfrak{Cat} \to \mathfrak{Cat}$ is the subcategory monad)

- $sm(\Sigma)[n]$ are the n-submorphisms
- sm(Σ)[f] gives the face sub-categories

Proposition

 $sm(\Sigma): \Delta^{op} \to \mathfrak{Cat}_P$ is a Lax Functor

(Where \mathfrak{Cat}_P is the Kleisli Category)

Moreover:

Theorem

 $\mathit{sm}: \mathit{Fun}(\Delta^{op}, \mathfrak{C})
ightarrow \mathit{Lax}(\Delta^{op}, \mathfrak{Cat}_P)$ is a functor

That is, from any basic ontology Σ , we get the "expansions", the submorphisms $sm(\Sigma)$

• concepts are organized in a Basic Ontology $\Sigma: \Delta^{op} o \mathfrak{C}$

• concepts are organized in a Basic Ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$

 expansions of concepts are submorphisms sm(Σ) : Δ^{op} → Cat_P

• concepts are organized in a Basic Ontology $\Sigma : \Delta^{op} \to \mathfrak{C}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- expansions of concepts are submorphisms $sm(\Sigma): \Delta^{op} \to \mathfrak{Cat}_P$
- We want to expand concepts into submorphisms

 \blacksquare concepts are organized in a Basic Ontology $\Sigma:\Delta^{op}\to \mathfrak{C}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• expansions of concepts are submorphisms $sm(\Sigma): \Delta^{op} \to \mathfrak{Cat}_P$

• We want to expand concepts into submorphisms Niavely an Ontological Expansion would be a natural

 $O:\Sigma\to \textit{sm}(\mathcal{T})$

- concepts are organized in a Basic Ontology $\Sigma: \Delta^{op} \to \mathfrak{C}$
- expansions of concepts are submorphisms $sm(\Sigma): \Delta^{op} \to \mathfrak{Cat}_P$

We want to expand concepts into submorphisms
 Niavely an Ontological Expansion would be a natural

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rigorous Ontological expansion in $\mathfrak{C}=\mathfrak{Set}$

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

 For 𝔅 = 𝔅𝔅𝔅, we lift Σ : Δ^{op} → 𝔅𝔅𝔅 "trivially" to a functor tr(Σ) : Δ^{op} → 𝔅𝔅𝔅_P

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

• For $\mathfrak{C} = \mathfrak{Set}$, we lift $\Sigma : \Delta^{op} \to \mathfrak{Set}$ "trivially" to a functor $tr(\Sigma) : \Delta^{op} \to \mathfrak{Cat}_P$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

■ in Get we compose with the free "discreet" functor

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

- For $\mathfrak{C} = \mathfrak{Set}$, we lift $\Sigma : \Delta^{op} \to \mathfrak{Set}$ "trivially" to a functor $tr(\Sigma) : \Delta^{op} \to \mathfrak{Cat}_P$
- in Get we compose with the free "discreet" functor

 $Fr:\mathfrak{Set}\to\mathfrak{Cat}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

- For $\mathfrak{C} = \mathfrak{Set}$, we lift $\Sigma : \Delta^{op} \to \mathfrak{Set}$ "trivially" to a functor $tr(\Sigma) : \Delta^{op} \to \mathfrak{Cat}_P$
- in Get we compose with the free "discreet" functor

 $Fr:\mathfrak{Set}\to\mathfrak{Cat}$

and the kleisli inclusion $\{\} : \mathfrak{Cat} \to \mathfrak{Cat}_P$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

- For $\mathfrak{C} = \mathfrak{Set}$, we lift $\Sigma : \Delta^{op} \to \mathfrak{Set}$ "trivially" to a functor $tr(\Sigma) : \Delta^{op} \to \mathfrak{Cat}_P$
- in Set we compose with the free "discreet" functor

 $Fr:\mathfrak{Set}\to\mathfrak{Cat}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

and the kleisli inclusion $\{\} : \mathfrak{Cat} \to \mathfrak{Cat}_P$ $tr(\Sigma) = \{Fr \circ \Sigma\} : \Delta^{op} \to \mathfrak{Cat}_P$

However, $\Sigma : \Delta^{op} \to \mathfrak{Set}$, but $sm(\mathcal{T}) : \Delta^{op} \to \mathfrak{Cat}_P$

- For $\mathfrak{C} = \mathfrak{Set}$, we lift $\Sigma : \Delta^{op} \to \mathfrak{Set}$ "trivially" to a functor $tr(\Sigma) : \Delta^{op} \to \mathfrak{Cat}_P$
- in 𝔅𝔄t we compose with the free "discreet" functor

 $Fr:\mathfrak{Set}\to\mathfrak{Cat}$

and the kleisli inclusion $\{\} : \mathfrak{Cat} \to \mathfrak{Cat}_P$

- $tr(\Sigma) = {Fr \circ \Sigma} : \Delta^{op} \to \mathfrak{Cat}_P$
- this gives us a (representable) functor

 $tr: Fun(\Delta^{op}, \mathfrak{Set}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$

In set, we have:

In set, we have:

• "Trivial" expansion $tr: Fun(\Delta^{op}, \mathfrak{Set}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In set, we have:

• "Trivial" expansion $tr: Fun(\Delta^{op}, \mathfrak{Set}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"Real" expansion functor
 sm : Fun(Δ^{op}, Get) → Lax(Δ^{op}, Cat_P)

In set, we have:

- "Trivial" expansion $tr: Fun(\Delta^{op}, \mathfrak{Set}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$
- "Real" expansion functor
 sm : Fun(Δ^{op}, Get) → Lax(Δ^{op}, Cat_P)
- two basic ontologies $\Sigma, \mathcal{T} : \Delta^{op} \to \mathfrak{Set}$

Ontological Expansion

an Ontological Expansion is a natural transformation

$$O: tr(\Sigma) \to sm(\mathcal{T})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

What is $tr : Fun(\Delta^{op}, \mathfrak{C}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$ for general \mathfrak{C} ?

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

What is $tr : Fun(\Delta^{op}, \mathfrak{C}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$ for general \mathfrak{C} ? The answer might lie in the 3rd goal

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What is $tr : Fun(\Delta^{op}, \mathfrak{C}) \to Lax(\Delta^{op}, \mathfrak{Cat}_P)$ for general \mathfrak{C} ? The answer might lie in the 3rd goal

Goal 3

Reconstruct data from it's elaborations

we're going to take cues from Grothendieck Topologies

・ロト・西ト・山田・山田・山口・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Category to organize concepts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Category to organize concepts
- Coverings are elaborations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Category to organize concepts
- Coverings are elaborations
- Sheaf condition reconstructs data

"a covering of a covering is a covering"

"a covering of a covering is a covering" \rightarrow "An expansion of an expansion is an expansion"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- "a covering of a covering is a covering"
- \rightarrow "An expansion of an expansion is an expansion"

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 \rightarrow composition of expansion

- "a covering of a covering is a covering"
- \rightarrow "An expansion of an expansion is an expansion"
- \rightarrow composition of expansion
 - From $O: tr(\Sigma) \to sm(\Sigma')$ and $O': tr(\Sigma') \to sm(\Sigma'')$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- "a covering of a covering is a covering"
- \rightarrow "An expansion of an expansion is an expansion"
- \rightarrow composition of expansion

• From $O: tr(\Sigma) \to sm(\Sigma')$ and $O': tr(\Sigma') \to sm(\Sigma'')$ we want an $O' \circ O: tr(\Sigma) \to sm(\Sigma'')$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conjecture

sm: $(\Delta^{op}/2 - \mathfrak{Cat})_{Lax} \rightarrow (\Delta^{op}/2 - \mathfrak{Cat})_{Lax}$

Conjecture

sm:
$$(\Delta^{op}/2 - \mathfrak{Cat})_{Lax} \rightarrow (\Delta^{op}/2 - \mathfrak{Cat})_{Lax}$$

$$tr(\Sigma') \xrightarrow{O'} sm(\Sigma'')$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$tr(\Sigma) \xrightarrow{O} sm(\Sigma')$$

Conjecture

sm:
$$(\Delta^{op}/2 - \mathfrak{Cat})_{Lax} \rightarrow (\Delta^{op}/2 - \mathfrak{Cat})_{Lax}$$

$$\begin{split} tr(\Sigma') &\xrightarrow{O'} sm(\Sigma'') \\ & \clubsuit \\ tr(\Sigma) &\xrightarrow{O} sm(\Sigma') \quad sm(tr(\Sigma')) \xrightarrow{sm(O')} sm(sm(\Sigma'')) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Conjecture

sm:
$$(\Delta^{op}/2 - \mathfrak{Cat})_{Lax} \rightarrow (\Delta^{op}/2 - \mathfrak{Cat})_{Lax}$$

$$tr(\Sigma') \xrightarrow{O'} sm(\Sigma'')$$

$$\bigcup$$

$$tr(\Sigma) \xrightarrow{O} sm(\Sigma') \xrightarrow{\iota} sm(tr(\Sigma')) \xrightarrow{sm(O')} sm(sm(\Sigma''))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjecture

sm:
$$(\Delta^{op}/2 - \mathfrak{Cat})_{Lax} \rightarrow (\Delta^{op}/2 - \mathfrak{Cat})_{Lax}$$

$$tr(\Sigma') \xrightarrow{O'} sm(\Sigma'')$$
$$\mathbf{r}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $tr(\Sigma) \xrightarrow{O} sm(\Sigma') \xrightarrow{\iota} sm(tr(\Sigma')) \xrightarrow{sm(O')} sm(sm(\Sigma'')) \xrightarrow{\mu} sm(\Sigma'')$

Current Work

$$tr(\Sigma) \stackrel{O}{\rightarrow} sm(\Sigma') \stackrel{\iota}{\rightarrow} sm(tr(\Sigma')) \stackrel{sm(O')}{\rightarrow} sm(sm(\Sigma'')) \stackrel{\mu}{\rightarrow} sm(\Sigma'')$$

Current Work

$$tr(\Sigma) \stackrel{O}{\rightarrow} sm(\Sigma') \stackrel{\iota}{\rightarrow} sm(tr(\Sigma')) \stackrel{sm(O')}{\rightarrow} sm(sm(\Sigma'')) \stackrel{\mu}{\rightarrow} sm(\Sigma'')$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

this gives some conditions for tr

• we have a natural $i: tr(\Sigma') \to sm(tr(\Sigma'))$

Current Work

$$tr(\Sigma) \stackrel{O}{\rightarrow} sm(\Sigma') \stackrel{\iota}{\rightarrow} sm(tr(\Sigma')) \stackrel{sm(O')}{\rightarrow} sm(sm(\Sigma'')) \stackrel{\mu}{\rightarrow} sm(\Sigma'')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

this gives some conditions for tr

- we have a natural $i : tr(\Sigma') \to sm(tr(\Sigma'))$
- seems to make sm into some sort of monad

$$tr(\Sigma) \stackrel{O}{\rightarrow} sm(\Sigma') \stackrel{\iota}{\rightarrow} sm(tr(\Sigma')) \stackrel{sm(O')}{\rightarrow} sm(sm(\Sigma'')) \stackrel{\mu}{\rightarrow} sm(\Sigma'')$$

this gives some conditions for tr

- we have a natural $i: tr(\Sigma') \to sm(tr(\Sigma'))$
- seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

$$[(\Delta^{op}/2 - \mathfrak{Cat})_{Lax}]_{sm}$$

$$[(\Delta^{op}/2 - \mathfrak{Cat})_{Lax}]_{sm}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Organize data: Objects are Basic Ontologies

$$[(\Delta^{op}/2 - \mathfrak{Cat})_{Lax}]_{sm}$$

■ Organize data: Objects are Basic Ontologies Ø

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Organize data: Objects are Basic Ontologies Ø
Elaborations: Morphism are Ontological Expansions

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Organize data: Objects are Basic Ontologies Ø
 Elaborations: Morphism are Ontological Expansions Ø
Proposed Definition: Ontology

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Organize data: Objects are Basic Ontologies Ø
- Elaborations: Morphism are Ontological Expansions Ø
- A means of recovering data from expansions

Proposed Definition: Ontology

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Organize data: Objects are Basic Ontologies Ø
- Elaborations: Morphism are Ontological Expansions Ø
- A means of recovering data from expansions \Box

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

- Organize data: Objects are Basic Ontologies II
- Elaborations: Morphism are Ontological Expansions ∅
- A means of recovering data from expansions □

The condition that our ontological expansions compose gives us the following definiton:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$[(\Delta^{op}/2-\mathfrak{Cat})_{Lax}]_{sm}$

- Organize data: Objects are Basic Ontologies Ø
- Elaborations: Morphism are Ontological Expansions ∅
- A means of recovering data from expansions \Box

The condition that our ontological expansions compose gives us the following definiton:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposed Definition

A Δ -**Ontology** is a subcategory $\mathbb{O} \hookrightarrow [(\Delta^{op}/2 - \mathfrak{Cat})_{Lax}]_{sm}$

intuition: [OLOG] "OLOGS: A Categorical Framework for Knowledge Representation" David I. Spivak, Robert E. Kent

(higher) category theory:

- [1] "Higher Categories, Higher Operads" Leinster
- [2] "Higher Topos Theory" Lurie
- [3] "Sheaves in Geometry and Logic" Maclane, Moerdijk
- [4] "Categories for the working mathematician" Maclane

[5] "The Stack Of Microlocal Presheaves" Waschkies