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But this is not yet rigorous.
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The 1-submorphism S1 has an entire subcategory of
0-submorphisms domains

d̂om(S1) ↪→ sm(Σ)[0]
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Formal Faces

for f : k → n ∈ ∆, we say Sk is an f-face of Sn if:

n∗(Sn) n∗(J∗n(Σ))

k∗(Sk) k∗(J∗k (Σ))

n∗(ηn)

i Σ∗(f )

k∗(ηk )

Inuitively, this diagram is saying:
”Restrict the elements of Sn to the n-elements σn ∈ Sn ∩∆[n] and
check that f (σn) ∈ Sk”



Formal Faces

We reformulate our criteria as a pullback:

f̂ (Sn) sm(Σ)[k]

Σ∗(f ) ◦1 n
∗(Sn)/Qk Qk

y
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U

(Where Qk = Cat(∗,C)/k∗(J∗k (Σ))

forgetting about the details: we get a subcategory

f̂ (Sn) ↪→ sm(Σ)[k]

This pullback allows us to prove basic properties of sm
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sm(Σ) is a lax functor

f̂ : sm(Σ)[n]→ P(sm(Σ)[k])

(where P : Cat→ Cat is the subcategory monad)

sm(Σ)[n] are the n-submorphisms

sm(Σ)[f ] gives the face sub-categories

Proposition

sm(Σ) : ∆op → CatP is a Lax Functor

(Where CatP is the Kleisli Category)
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sm is a functor

Moreover:

Theorem

sm : Fun(∆op,C)→ Lax(∆op,CatP) is a functor

That is, from any basic ontology Σ,
we get the ”expansions”, the submorphisms sm(Σ)



Recap

concepts are organized in a Basic Ontology Σ : ∆op → C

expansions of concepts are submorphisms
sm(Σ) : ∆op → CatP

We want to expand concepts into submorphisms

Niavely an Ontological Expansion would be a natural

O : Σ→ sm(T ) O(f (s)) ∈ f̂ (O(s))
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Rigorous Ontological expansion in C = Set

However, Σ : ∆op → Set

, but sm(T ) : ∆op → CatP

For C = Set, we lift Σ : ∆op → Set ”trivially” to a functor
tr(Σ) : ∆op → CatP

in Set we compose with the free ”discreet” functor

Fr : Set→ Cat

and the kleisli inclusion {} : Cat→ CatP

tr(Σ) = {Fr ◦ Σ} : ∆op → CatP

this gives us a (representable) functor

tr : Fun(∆op,Set)→ Lax(∆op,CatP)
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Ontological Expansion in C = Set

In set, we have:

“Trivial” expansion tr : Fun(∆op,Set)→ Lax(∆op,CatP)

“Real” expansion functor
sm : Fun(∆op,Set)→ Lax(∆op,CatP)

two basic ontologies Σ, T : ∆op → Set

Ontological Expansion

an Ontological Expansion is a natural transformation

O : tr(Σ)→ sm(T )
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Current Work

What is tr : Fun(∆op,C)→ Lax(∆op,CatP) for general C?

The answer might lie in the 3rd goal

Goal 3

Reconstruct data from it’s elaborations

we’re going to take cues from Grothendieck Topologies
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“a covering of a covering is a covering”

→“An expansion of an expansion is an expansion”
→ composition of expansion
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we want an O ′ ◦ O : tr(Σ)→ sm(Σ′′)
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Current Work

tr(Σ)
O→ sm(Σ′)

ι→ sm(tr(Σ′))
sm(O′)→ sm(sm(Σ′′))

µ→ sm(Σ′′)

this gives some conditions for tr

we have a natural i : tr(Σ′)→ sm(tr(Σ′))

seems to make sm into some sort of monad

if this is the case, the ontological expansions are sm-algebras

[(∆op/2− Cat)Lax ]sm
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A means of recovering data from expansions 2

The condition that our ontological expansions compose gives us
the following definiton:

Proposed Definition

A ∆-Ontology is a subcategory O ↪→ [(∆op/2− Cat)Lax ]sm
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