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Categories with Different Cell Shapes

o Categories

dots, arrows

o 2-Categories dots, arrows, 2-globs

@ Double-Categories dots, red/blue arrows, squares

o Multi-Categories

dots, n-to-1 arrows, n >0
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Categories with Different Cell Shapes

o Categories
o 2-Categories
@ Double-Categories

o Multi-Categories
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Nerves

o Categories
o 2-Categories
@ Double-Categories

o Multi-Categories
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@ The data of a familial endofunctor F on C consists of:

o A functor 5:C% — Set
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Familial Monads on Cell Diagrams

@ The data of a familial endofunctor F on C consists of:

o A functor 5:C% — Set
o A functor E : el(S) = C

o ForcinC, X inC, FXc = ]I Homg(Et,X)
teSc
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Theories and Nerves

@ For each t € Sc, an algebra A of T has a map
Homs(Et, A) — A = Homs(y(c), A)
@ This map is not representable, but its transpose is:

Homtag(TEt, A) — Homrag(Ty(c), A)
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Theories and Nerves

@ For each t € Sc, an algebra A of T has a map
Homs(Et, A) — A = Homs(y(c), A)
@ This map is not representable, but its transpose is:
Homtaig( TEt, A) — Hom1ag(Ty(c), A)

@ The full subcategory Ct of TAlg on {TEt} has
“cocomposition maps”
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Theories and Nerves

@ For each t € Sc, an algebra A of T has a map
Homs(Et, A) — A = Homs(y(c), A)
@ This map is not representable, but its transpose is:
Homtaig( TEt, A) — Hom1ag(Ty(c), A)

@ The full subcategory Ct of TAlg on {TEt} has
“cocomposition maps” .
o (Weber 2007) The T nerve N : TAlg — Cr is fully faithful:

NATE = HOITITA/g( TEt, A)
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o (Weber 2007) The T nerve N : TAlg — Cris fully faithful

@ The full subcategory Ct of TAlg on { TEt} is the theory
associated to T

o Nerves of T-algebras are functors C7¥ — Set preserving
certain limits
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o (Weber 2007) The T nerve N : TAlg — Cris fully faithful

@ The full subcategory Ct of TAlg on { TEt} is the theory
associated to T

o Nerves of T-algebras are functors C7¥ — Set preserving
certain limits

e A, ©,, A? and Q all arise from this construction
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Theories and Nerves

o (Weber 2007) The T nerve N : TAlg — Cris fully faithful

@ The full subcategory Ct of TAlg on { TEt} is the theory
associated to T

Nerves of T-algebras are functors C3¥ — Set preserving
certain limits

A, ©,, A? and Q all arise from this construction

Those are all test categories...
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@ ldeas from category theory should generalize to other familial
algebras in cell diagrams (and often do!)

@ Enriched categories are structures with new cell shapes

@ So are internal categories

e\rl\l.\'\ i Cat C_}—:}‘\l @l'_’

A P’/‘A w 2-Cat
iz
A
Cat

Brandon Shapiro Shape Independent Category Theory



Shape Independent Category Theory

@ ldeas from category theory should generalize to other familial
algebras in cell diagrams (and often do!)

@ Enriched categories are structures with new cell shapes

@ So are internal categories
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@ ldeas from category theory should generalize to other familial
algebras in cell diagrams (and often do!)

@ Enriched categories are structures with new cell shapes
@ So are internal categories
@ These constructions extend to other familial representations
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Enrichment via Cell Shapes

@ Let C be a small direct category with local maximum object e
@ For any small category D, define C . D to have:

o Objects ob(C)\{e} LUl ob(D)

e Same morphisms ¢ — ¢’ as C and d — d’ as D
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Enrichment via Cell Shapes

@ Let C be a small direct category with local maximum object e
@ For any small category D, define C . D to have:

Objects ob(C)\{e} U ob(D)

Same morphisms ¢ — ¢’ as C and d — d’ as D

For all ¢, d, Hom(c,d) = Hom(c, e), Hom(d,c) =

. £ £
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Enrichment via Cell Shapes

o Cell shapes of C 1. D are e-cells stuffed with cell shapes of D
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Enrichment via Cell Shapes

o Cell shapes of C 1. D are e-cells stuffed with cell shapes of D
o Cell diagrams in C. D are cell diagrams over C stuffed with a
diagram over D in each e-cell
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Enrichment via Cell Shapes

@ Let Ty, Tp be familial monads on CA D

@ Build composable diagrams over C . D by stuffing those over
C with composable diagrams over D

@ (S.) These diagrams represent a familial monad T on C/2;7)

@ (S.) When C = G;, T-algebras ~ Tp-enriched categories.

@ (S.) When T¢ is “e-injective” and Tp "has enough
degeneracies”, the theory (C e D)1 ~ C1, 1 DT, Where
Ct. — T counts the e-cells in each Ect.
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