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Definition (Quillen)

Suppose we are given a family of maps M := (m;: Ai — Bi)ici
indexed by a set / and a map f: X — Y. We say M has the left
lifting property against f and f has the right lifting property
against M if for every i € | and every lifting problem of m; against
f (i.e. every commutative square with m; on the left and f on the
right),
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Theorem (Garner’'s Small Object Argument)
Suppose that C satisfies the following conditions.
1. C is locally small.
2. C is cocomplete.

3. For every X € C, there is a regular ordinal a such that
C(X,—): C — Set preserves a-filtered colimits.

Suppose we are given a small category T and a diagram Z — C™.
Then there is a canonical algebraic weak factorisation system

(L, R) such that R-algebra structures are precisely such natural
choices of lifts. We say (L, R) is cofibrantly generated by M.



Definition (Orton, Pitts)

Suppose that C is an elementary topos, that dp,d1: 1 = I is an
interval object and that ® is a subobject of the subobject classifier.
A map f: X — Y is a Kan fibration if the following holds in the
internal language of C:

For every ¢ : ® and i = 0,1, f has the right lifting property
against |¢|X&;, where |p|: -~ 1 is the proposition classified by ¢.
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An external notion of set is needed even to state what it
means to be cofibrantly generated.

. Cocompleteness and local smallness play an important role,

even before any transfinite construction takes place.

No reason to expect compatibility with pullback.

In contrast Orton and Pitts work in arbitrary elementary topos.

1.

Kan fibration is defined in the internal logic of the topos,
without needing an external notion of set.

. Elementary toposes don't need to be cocomplete. Important

examples don't even have colimits of countable sequences
(realizability toposes).

Constructions carried out in the internal language of a topos
are “automatically stable under pullback.”
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The aim of this work is to provide a general approach to lifting
problems that generalises both traditional approaches and the
“internal logic" approach used by Orton and Pitts.

We will also answer the questions:

1. Is there a version of the small object argument for the internal
logic of a topos?

2. If so, in what sense is it stable under pullback?



Definition
Let / be an object of B. A family of maps indexed by | is a map
m: A— BinE,.

Definition

Suppose we are given a families of maps m: A— Bover [ € B
and f: X — Y over J € B. A family of lifting problems from m to
f consists of an object K € B, mapso: K — [ and 7: K — J
together with a lifting problem of o*(m) against 7*(f) in Ek:

(A) SELIEN 7*(X)

«mm &

(B) — 1= 7(Y)



Definition

A family of lifting problems (K, o, 7, p, q) is universal if every other
family of lifting problems factors through it uniquely. That is, for
every other family of lifting problems (L, i, v, r,s), there is a
unique map p: L — K making the following diagrams commute.

pro(A) —Es prr(X)

X Y y
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fibration.
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We will use Bénabou's notion of locally small Grothendieck
fibration.

Theorem
Suppose that p: |E — B is a locally small fibration, and B is finitely
complete. Then all universal lifting problems exist.

Theorem

Suppose that the universal lifting problem from m to f exists.
Then solutions to the universal lifting problem correspond precisely
to a coherent choice of solution for every family of lifting problems
fromm to f.

Definition

We say a family of maps m over | has the fibred left lifting property
against a family of maps f over J and f has the fibred right lifting
property against m if the universal lifting problem has a filler.
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Example

We consider a category indexed fibration Famc,:(C) — Cat for a
locally small category C.

A family of maps over a small category 7 is precisely a map in the
functor category CZ. However, (C%)™ = C*Z = (C)Z. So this
is the same as a functor M: Z — C—.

We can view f: X — Y in C as a family of maps over 1.

The universal lifting problem is then constructed as follows. The
indexing object K is the comma category (M | f). We need a
commutative square in the functor category C(M) | which is given
by “projection.”

f has the fibred right lifting property against M if and only if we
have a choice of fillers satisfying Garner's naturality condition.



Example

We work over a codomain fibration cod: C7 — C for a locally
cartesian closed category C.



Example
We work over a codomain fibration cod: C7 — C for a locally
cartesian closed category C.

A family of maps over | € C is a map in the slice category C/I,
that is, a map m in a commutative triangle below.

m

A——— B

%



Example

We work over a codomain fibration cod: C7 — C for a locally
cartesian closed category C.

A family of maps over | € C is a map in the slice category C/I,
that is, a map m in a commutative triangle below.

A—" B

%

The universal lifting problem is computed as follows. The indexing
object K is defined in the internal logic as

K=Y, X4 X yA; YBi. The horizontal maps in the universal
lifting problem are given by evaluation.
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This example can also be understood using enriched lifting
problems.
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Example

We can view m as a map into the terminal object of the slice
category C/B. f has the fibred right lifting property against m if
and only if for every map g: B’ — B it has the (ordinary) right
lifting property against g*(f): g*(A) — B'.

This example does not appear to be possible to state using
enriched lifting problems.
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Let p: E — B be a locally small bifibration, and assume B has
finite limits.

Suppose we are given a family of maps m over | € B.

In general we can do the following.

1. Show that for any f the universal family of lifting problems
from m to f exists.

2. Carry out step 1 of the small object argument to obtain a left
hand side of an awfs where the R-algebra structures on a map
f precisely correspond to solutions to the universal family of
lifting problems.

3. State what it means for an awfs cofibrantly generated by m to
exist, and show it is uniquely determined up to canonical
isomorphism if it does.

4. Show that the cofibrantly generated awfs exists if and only if
we can find a choice of initial algebras for certain pointed
endofunctors.
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For category indexed family fibrations, we can use Garner’'s small
object argument, as usual.
For codomain fibrations we can use one of the results below.

Theorem (S)

Let C be a finitely cocomplete, locally cartesian closed category
with disjoint sums and W -types.

Suppose that m is a map in a slice category C/I.

If any one of the conditions below holds, then the awfs cofibrantly
generated by m exists.

1. C has exact quotients and satisfies WISC (a weak choice
axiom). This includes all Grothendieck toposes and
realizability toposes (as long as WISC holds in the meta
theory).

2. C is a category of internal presheaves and m is a locally
decidable monomorphism

3. C is boolean



We can view cofibrantly generated awfs's as monads R over a
composition of two Grothendieck fibrations:
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We can view cofibrantly generated awfs's as monads R over a
composition of two Grothendieck fibrations:

E—>

vert
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Definition
We say R is fibred if it preserves cartesian maps over the
Grothendieck fibration p o cod.

Definition
We say R is strongly fibred if it preserves cartesian maps over the
Grothendieck fibration cod.



We can show R is fibred under mild conditions (p is complete and
satisfies Beck-Chevalley). In particular, we have,
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Let C be a topos that satisfies the Orton-Pitts axioms and WISC.
We can define an awfs of trivial cofibrations and Kan fibrations,
and this awfs is fibred, but not strongly fibered.



We can show R is fibred under mild conditions (p is complete and
satisfies Beck-Chevalley). In particular, we have,

Theorem

Let C be a topos that satisfies the Orton-Pitts axioms and WISC.
We can define an awfs of trivial cofibrations and Kan fibrations,
and this awfs is fibred, but not strongly fibered.

Usually awfs’s will not be strongly fibred, but there is an important
exception.

Theorem

Let C be locally cartesian closed category. We work over the
codomain fibration cod: C7 — C. Suppose that m: A — 1g is a
map into the terminal object of the slice category C/B. If the awfs
cofibrantly generated by m exists, then it is strongly fibred.

In particular the cofibration-trivial fibration awfs in an Orton-Pitts
category is stongly fibred.
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Thank you for your attention!



