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Deterministic and nondeterministic processes

Category theory as a theory of processes

Processes can be deterministic or non-deterministic
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Stochastic matrices Standard definitions

Stochastic maps

Let X and Y be finite sets. A stochastic map r : Y // X assigns a
probability measure on X to every point in Y . It is a function whose value
at a point “spreads out” over the codomain.

Y

•
y

X

ry

The value ry (x) of ry at x is denoted by rxy . Since ry is a probability
measure, rxy ≥ 0 for all x and y . Also,

∑
x∈X rxy = 1 for all y .
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Stochastic matrices Standard definitions

Stochastic maps from functions

A function f : X → Y induces a stochastic map f : X // Y via

fyx := δyf (x)

X

•
x

Y

•
f (x)

fx

where δyy ′ is the Kronecker delta and equals 1 if and only if y = y ′ and is
zero otherwise.
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Stochastic matrices Standard definitions

Composing stochastic maps

The composition ν ◦ µ : X // Z of µ : X // Y followed by ν : Y // Z
is defined by matrix multiplication

(ν ◦ µ)zx :=
∑
y∈Y

νzyµyx .

This is completely intuitive! If we start at x and end at z , we have the
possibility of passing through any intermediate step y . These “paths” have
associated probabilities, which must be added.

X

•

•

•
x

Y

•
•

y

•
•
•

•

•
z

Z
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Stochastic matrices Standard definitions

Special case: probability measures

A probability measure µ on X can be viewed as a stochastic map
µ : {•} // X from a single element set.

If f : X → Y is a function, the composition f ◦ µ : {•} // Y is the
pushforward of µ along f .

If f : X // Y is a stochastic map, the composition f ◦µ : {•} // Y
is a generalization of the pushforward of a measure. The measure
f ◦ µ on Y is given by (f ◦ µ)(y) =

∑
x∈X fyxµ(x) for each y ∈ Y .

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 12 / 29



Stochastic matrices Standard definitions

Special case: probability measures

A probability measure µ on X can be viewed as a stochastic map
µ : {•} // X from a single element set.

If f : X → Y is a function, the composition f ◦ µ : {•} // Y is the
pushforward of µ along f .

If f : X // Y is a stochastic map, the composition f ◦µ : {•} // Y
is a generalization of the pushforward of a measure. The measure
f ◦ µ on Y is given by (f ◦ µ)(y) =

∑
x∈X fyxµ(x) for each y ∈ Y .

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 12 / 29



Stochastic matrices Standard definitions

Special case: probability measures

A probability measure µ on X can be viewed as a stochastic map
µ : {•} // X from a single element set.

If f : X → Y is a function, the composition f ◦ µ : {•} // Y is the
pushforward of µ along f .

If f : X // Y is a stochastic map, the composition f ◦µ : {•} // Y
is a generalization of the pushforward of a measure. The measure
f ◦ µ on Y is given by (f ◦ µ)(y) =

∑
x∈X fyxµ(x) for each y ∈ Y .

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 12 / 29



Stochastic matrices The category of stochastic maps

Stochastic maps and their compositions form a category

Composition of stochastic maps is associative and the identity function on
any set acts as the identity morphism.
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Classical disintegrations Classical disintegrations: intuition

Disintegrations as a section

Gromov pictures a measure-preserving function f : X → Y in terms of
water droplets. f combines the water droplets and their volume
(probabilities) add when they combine under f . A disintegration
r : Y // X is a measure-preserving stochastic section of f .

X

Y

f
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Classical disintegrations Diagrammatic disintegrations

Disintegrations: diagrammatic definition

Definition

Let (X , µ) and (Y , ν) be probability
spaces and let f : X → Y be a
function such that the diagram on the
right commutes.

{•}

X Y

µ

��

ν

��

f
//

A disintegration of µ over ν consistent with f is a stochastic map
r : Y // X such that

{•}

X Y

µ

��

ν

��
r

oo

and

X

YY

r

ZZ

f

��

idY
oo

ν

the latter diagram signifying commutativity ν-a.e.
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Classical disintegrations exist and are unique a.e.

Theorem

Let (X , µ) and (Y , ν) be finite sets equipped with probability measures µ
and ν. Let f : X → Y be a measure-preserving function. Then there exists
a unique (ν-a.e.) disintegration r : Y // X of µ over ν consistent with f .

In fact, a formula for the disintegration is

rxy :=

{
µxδyf (x)/νy if νy > 0

1/|X | otherwise
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

Matrix algebras

Let Mn(C) denote the set of complex n × n matrices. It is an
example of a C ∗-algebra: we can add and multiply n× n matrices, the
operator norm gives a norm, and A∗ is the conjugate transpose of A.

Every finite-dimensional C ∗-algebra is (C ∗-algebraically isomorphic
to) a direct sum of matrix algebras.

In particular, CX , functions from a finite set X to C, is a
commutative C ∗-algebra. A basis for this algebra as a vector space is
{ex}x∈X defined by ex(x ′) := δxx ′ .

If A is a C ∗-algebra, then Mn(C)⊗A can be viewed as n × n
matrices with entries in A. It has a natural C ∗-algebra structure.

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 18 / 29



Quantum disintegrations Completely positive maps and ∗-homomorphisms

Matrix algebras

Let Mn(C) denote the set of complex n × n matrices. It is an
example of a C ∗-algebra: we can add and multiply n× n matrices, the
operator norm gives a norm, and A∗ is the conjugate transpose of A.

Every finite-dimensional C ∗-algebra is (C ∗-algebraically isomorphic
to) a direct sum of matrix algebras.

In particular, CX , functions from a finite set X to C, is a
commutative C ∗-algebra. A basis for this algebra as a vector space is
{ex}x∈X defined by ex(x ′) := δxx ′ .

If A is a C ∗-algebra, then Mn(C)⊗A can be viewed as n × n
matrices with entries in A. It has a natural C ∗-algebra structure.

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 18 / 29



Quantum disintegrations Completely positive maps and ∗-homomorphisms

Matrix algebras

Let Mn(C) denote the set of complex n × n matrices. It is an
example of a C ∗-algebra: we can add and multiply n× n matrices, the
operator norm gives a norm, and A∗ is the conjugate transpose of A.

Every finite-dimensional C ∗-algebra is (C ∗-algebraically isomorphic
to) a direct sum of matrix algebras.

In particular, CX , functions from a finite set X to C, is a
commutative C ∗-algebra. A basis for this algebra as a vector space is
{ex}x∈X defined by ex(x ′) := δxx ′ .

If A is a C ∗-algebra, then Mn(C)⊗A can be viewed as n × n
matrices with entries in A. It has a natural C ∗-algebra structure.

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 18 / 29



Quantum disintegrations Completely positive maps and ∗-homomorphisms

Matrix algebras

Let Mn(C) denote the set of complex n × n matrices. It is an
example of a C ∗-algebra: we can add and multiply n× n matrices, the
operator norm gives a norm, and A∗ is the conjugate transpose of A.

Every finite-dimensional C ∗-algebra is (C ∗-algebraically isomorphic
to) a direct sum of matrix algebras.

In particular, CX , functions from a finite set X to C, is a
commutative C ∗-algebra. A basis for this algebra as a vector space is
{ex}x∈X defined by ex(x ′) := δxx ′ .

If A is a C ∗-algebra, then Mn(C)⊗A can be viewed as n × n
matrices with entries in A. It has a natural C ∗-algebra structure.

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory OctoberFest 2018 The City College of New York (CUNY))Noncommutative disintegration October 28, 2018 18 / 29



Quantum disintegrations Completely positive maps and ∗-homomorphisms

Completely positive maps and ∗-homomorphisms

Definition

Let A and B be finite-dimensional C ∗-algebras with units 1A and 1B
(think direct sums of matrix algebras).

An element of a C ∗-algebra A is
positive iff it equals a∗a for some a ∈ A. A linear map ϕ : A // B is
positive iff it sends positive elements to positive elements. A linear map
ϕ : A // B is n-positive iff idMn(C) ⊗ ϕ :Mn(C)⊗A //Mn(C)⊗B is
positive. ϕ is completely positive iff ϕ is n-positive for all n ∈ N. A
∗-homomorphism A → B from A to B is a function preserving the
C ∗-algebra structure: f is linear, f (aa′) = f (a)f (a′), f (1A) = 1B, and
f (a∗) = f (a)∗. A positive unital map A // C is called a state.
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

Examples

An n × n matrix is positive if and only if it is self-adjoint and its
eigenvalues are non-negative.

A ∗-homomorphism F :Mn(C)→Mm(C) exists if and only if
m = np for some p ∈ N.

When this happens, there exists a unitary
m ×m matrix U (unitary means UU∗ = 1m) such that

F (A) = U

A 0
. . .

0 A

U∗ for all A ∈Mn(C).

If ω :Mn(C) // C is a state, there exists a unique n × n positive
matrix ρ such that tr(ρ) = 1 and tr(ρA) = ω(A) for all A ∈Mn(C).
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

From finite sets to finite-dimensional C ∗-algebras I

There is a (contravariant) functor from finite sets and stochastic maps to
finite-dimensional C ∗-algebras and completely positive maps.

category theory
classical/

commutative
quantum/

noncommutative
physics/

interpretation

object
set

C∗-algebra
phase space
observables

→ morphism function ∗-homomorphism
deterministic

process

// morphism
stochastic

map
completely

positive map
non-deterministic

process
monoidal
product

cartesian
product ×

tensor
product ⊗

combining
systems

// to/from
monoidal unit

probability
measure

C∗-algebra state/
density matrix

physical state
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

From finite sets to finite-dimensional C ∗-algebras II

Briefly, this functor is given by

X 7→ CX(
f : X // Y

)
7→
(
CY 3 ey 7→

∑
x∈X

fyxex ∈ CX
)

In the special case where f is a ∗-homomorphism, fyx = δyf (x), the sum
reduces to ∑

x∈X
fyxex =

∑
x∈X

δyf (x)ex =
∑

x∈f −1(y)

ex

Therefore, an arbitrary function ϕ =
∑

y∈Y ϕ(y)ey ∈ CY gets sent to∑
y∈Y

ϕ(y)
∑
x∈X

fyxex =
∑
y∈Y

ϕ(y)
∑

x∈f −1(y)

ex =
∑
x∈X

ϕ(f (x))ex = ϕ ◦ f

the pullback of ϕ along f .
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Quantum disintegrations Non-commutative disintegrations

Non-commutative disintegrations

Definition (P-Russo)

Let (A, ω) and (B, ξ) be C ∗-algebras
equipped with states. Let F : B → A
be a ∗-homomorphism such that the
diagram on the right commutes. C

A B

ω

��
ξ

��

Foo

A disintegration of ω over ξ consistent with F is a completely positive map
R : A // B such that

C

A B

ω

��
ξ

��

R //

and

A

B B

F
��

R

BB
idB //

ξ

the latter diagram signifying commutativity ξ-a.e.
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Quantum disintegrations Existence and uniqueness

Existence and uniqueness of disintegrations

Surprising: existence is not guaranteed in the non-commutative setting!

Theorem (P-Russo)

Fix n, p ∈ N. Let

C

Mnp(C) Mn(C)

tr(ρ · )≡ω
��

ξ≡tr(σ · )
��

Foo

be a commutative diagram with F the ∗-homomorphism given by the
block diagonal inclusion F (A) = diag(A, . . . ,A). A disintegration of ω over
ξ consistent with F exists if and only if there exists a density matrix
τ ∈Mp(C) such that ρ = τ ⊗ σ.
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Quantum disintegrations Examples

Example 1: Einstein-Rosen-Podolsky

Theorem (P-Russo)

Let

ρ :=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 & σ :=
1

2

[
1 0
0 1

]
.

and let F :M2(C)→M4(C) be the diagonal map.

Then
tr(σA) = tr(ρF (A)) for all A but there does not exist a disintegration of ρ
over σ consistent with F .

Proof.

ρ is entangled (not separable) and therefore cannot be expressed as the
tensor product of any two 2× 2 density matrices.
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Quantum disintegrations Examples

Example 2: Diagonal density matrices

Theorem (P-Russo)

Fix p1, p2, p3, p4 ≥ 0 with p1 + p2 + p3 + p4 = 1, p1 + p3 > 0, and
p2 + p4 > 0. Let

ρ =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

 & σ =

[
p1 + p3 0

0 p2 + p4

]

be density matrices and let F :M2(C)→M4(C) be the block diagonal
inclusion.

Then tr(σA) = tr(ρF (A)) for all A. Furthermore, there exists a
disintegration of ρ over σ consistent with F if and only if

p1p4 = p2p3.
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Quantum disintegrations Examples

Summary

Formulating concepts in probability theory categorically enables one to
abstract these concepts to contexts beyond their initial domain. However,
we still lack a full categorical probability theory. Amazing discoveries are
yet to be made!

standard probability theory

?categorical probability theory?

noncommutative probability theory
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Quantum disintegrations Thank you

Thank you!

Thank you for your attention!
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