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Deterministic and nondeterministic processes

Category theory as a theory of processes

Processes can be deterministic or non-deterministic
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Stochastic matrices  Standard definitions

Stochastic maps
Let X and Y be finite sets. A stochastic map r : Y ~~> X assigns a

probability measure on X to every point in Y. It is a function whose value
at a point “spreads out” over the codomain.
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Stochastic matrices  Standard definitions

Stochastic maps

Let X and Y be finite sets. A stochastic map r : Y ~~> X assigns a
probability measure on X to every point in Y. It is a function whose value
at a point “spreads out” over the codomain.

L

The value r,(x) of r, at x is denoted by ry,. Since r, is a probability
measure, ry, > 0 for all x and y. Also, erx ryy = 1 for all y.
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Stochastic matrices  Standard definitions

Stochastic maps from functions

A function f : X — Y induces a stochastic map f : X ~~> Y via

frx 1= Oy ()
X Y
fx
eAAANAANAANAANAAN>

where 4, is the Kronecker delta and equals 1 if and only if y = y’ and is
zero otherwise.
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Stochastic matrices  Standard definitions

Composing stochastic maps

The composition vo p: X ~>Z of p: X ~=>Y followed by v : Y ~> Z
is defined by matrix multiplication

(Vo m)ax = Y Vayhyx.

yey

Arthur J. Parzygnat™ & Benjamin P. Russo Noncommutative disintegration October 28, 2018 6 /29



Stochastic matrices  Standard definitions

Composing stochastic maps

The composition vo p: X ~>Z of p: X ~=>Y followed by v : Y ~> Z
is defined by matrix multiplication

(Vo u)z =D Vaylyx.
yey

This is completely intuitive! If we start at x and end at z, we have the

possibility of passing through any intermediate step y. These “paths” have
associated probabilities, which must be added.

N
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Stochastic matrices  Standard definitions

Composing stochastic maps

The composition vo p: X ~>Z of p: X ~=>Y followed by v : Y ~> Z
is defined by matrix multiplication

(Vo m)ax = Y Vayhyx.

yey
This is completely intuitive! If we start at x and end at z, we have the
possibility of passing through any intermediate step y. These “paths” have
associated probabilities, which must be added.

Z Y X

Hoyx
Vzy, z
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Stochastic matrices  Standard definitions

Special case: probability measures

@ A probability measure . on X can be viewed as a stochastic map
p: {e} ~> X from a single element set.
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Stochastic matrices  Standard definitions

Special case: probability measures

@ A probability measure . on X can be viewed as a stochastic map
p: {e} ~> X from a single element set.

e If f: X — Y is a function, the composition f oy : {®} ~> Y is the
pushforward of p along f.
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Stochastic matrices  Standard definitions

Special case: probability measures

@ A probability measure . on X can be viewed as a stochastic map
p: {e} ~> X from a single element set.

e If f: X — Y is a function, the composition f oy : {®} ~> Y is the
pushforward of p along f.

e If f : X~ Y is a stochastic map, the composition fop : {e} ~>Y
is a generalization of the pushforward of a measure. The measure
fopon Yis given by (fopu)(y) =D ex fxi(x) for each y € Y.
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Stochastic matrices  The category of stochastic maps

Stochastic maps and their compositions form a category

Composition of stochastic maps is associative and the identity function on
any set acts as the identity morphism.
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Classical disintegrations Classical disintegrations: intuition

Disintegrations as a section

Gromov pictures a measure-preserving function f : X — Y in terms of
water droplets. f combines the water droplets and their volume
(probabilities) add when they combine under f.
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Classical disintegrations Classical disintegrations: intuition

Disintegrations as a section

Gromov pictures a measure-preserving function f : X — Y in terms of
water droplets. f combines the water droplets and their volume
(probabilities) add when they combine under f. A disintegration

r: Y ~~> X is a measure-preserving stochastic section of f.
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Classical disintegrations Diagrammatic disintegrations

Disintegrations: diagrammatic definition

Definition

Let (X,u) and (Y,v) be probability {o}
spaces and let f : X — Y be a w »
function such that the diagram on the \
right commutes. X Y
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Classical disintegrations Diagrammatic disintegrations

Disintegrations: diagrammatic definition

Definition

Let (X,u) and (Y,v) be probability {o}
spaces and let f : X — Y be a w »
function such that the diagram on the \
right commutes. X Y

A disintegration of u over v consistent with f is a stochastic map
r:Y ~> X such that

{o}
A = A

X

the latter diagram signifying commutativity v-a.e.
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Classical disintegrations exist and are unique a.e.

Theorem

Let (X, u) and (Y,v) be finite sets equipped with probability measures
and v. Let f : X — Y be a measure-preserving function. Then there exists
a unique (v-a.e.) disintegration r : Y ~~= X of u over v consistent with f.
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Classical disintegrations exist and are unique a.e.

Theorem

Let (X, u) and (Y,v) be finite sets equipped with probability measures
and v. Let f : X — Y be a measure-preserving function. Then there exists
a unique (v-a.e.) disintegration r : Y ~~= X of u over v consistent with f.

In fact, a formula for the disintegration is

)y /vy ify >0
Py = 1/1X| otherwise
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Quantum disintegrations Completely positive maps and *-homomorphisms

Matrix algebras

o Let M,(C) denote the set of complex n x n matrices. It is an
example of a C*-algebra: we can add and multiply n x n matrices, the
operator norm gives a norm, and A* is the conjugate transpose of A.
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o Let M,(C) denote the set of complex n x n matrices. It is an
example of a C*-algebra: we can add and multiply n x n matrices, the
operator norm gives a norm, and A* is the conjugate transpose of A.

@ Every finite-dimensional C*-algebra is (C*-algebraically isomorphic
to) a direct sum of matrix algebras.
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Matrix algebras

o Let M,(C) denote the set of complex n x n matrices. It is an
example of a C*-algebra: we can add and multiply n x n matrices, the
operator norm gives a norm, and A* is the conjugate transpose of A.

@ Every finite-dimensional C*-algebra is (C*-algebraically isomorphic
to) a direct sum of matrix algebras.

e In particular, CX, functions from a finite set X to C, is a
commutative C*-algebra. A basis for this algebra as a vector space is
{ex}xex defined by e (x') := dyur.

Arthur J. Parzygnat™ & Benjamin P. Russo Noncommutative disintegration October 28, 2018 18 /29



Quantum disintegrations Completely positive maps and *-homomorphisms

Matrix algebras

o Let M,(C) denote the set of complex n x n matrices. It is an
example of a C*-algebra: we can add and multiply n x n matrices, the
operator norm gives a norm, and A* is the conjugate transpose of A.

@ Every finite-dimensional C*-algebra is (C*-algebraically isomorphic
to) a direct sum of matrix algebras.

e In particular, CX, functions from a finite set X to C, is a
commutative C*-algebra. A basis for this algebra as a vector space is
{ex}xex defined by ey (x') := 0y

o If Ais a C*-algebra, then M,(C) ® A can be viewed as n x n
matrices with entries in A. It has a natural C*-algebra structure.
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Quantum disintegrations Completely positive maps and *-homomorphisms

Completely positive maps and *-homomorphisms

Definition
Let A and B be finite-dimensional C*-algebras with units 14 and 13
(think direct sums of matrix algebras).
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Completely positive maps and *-homomorphisms

Definition

Let A and B be finite-dimensional C*-algebras with units 14 and 13
(think direct sums of matrix algebras). An element of a C*-algebra A is
positive iff it equals a*a for some a € A.
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Quantum disintegrations Completely positive maps and *-homomorphisms

Completely positive maps and *-homomorphisms

Definition

Let A and B be finite-dimensional C*-algebras with units 1 4 and 15
(think direct sums of matrix algebras). An element of a C*-algebra A is
positive iff it equals a*a for some a € A. A linear map ¢ : A~> B is
positive iff it sends positive elements to positive elements.
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(think direct sums of matrix algebras). An element of a C*-algebra A is
positive iff it equals a*a for some a € A. A linear map ¢ : A~> B is
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Quantum disintegrations Completely positive maps and *-homomorphisms

Completely positive maps and *-homomorphisms

Definition

Let A and B be finite-dimensional C*-algebras with units 1 4 and 15
(think direct sums of matrix algebras). An element of a C*-algebra A is
positive iff it equals a*a for some a € A. A linear map ¢ : A~> B is
positive iff it sends positive elements to positive elements. A linear map

¢ : A~ Bis n-positive iff id y,(c) @ ¢ : Mp(C) @ A~> M,(C)®@ B is
positive. o is completely positive iff ¢ is n-positive for all n € N. A
x-homomorphism A — B from A to B is a function preserving the
C*-algebra structure: f is linear, f(aa’) = f(a)f(d’), f(14) = 13, and
f(a*) = f(a)*.
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Quantum disintegrations Completely positive maps and *-homomorphisms

Completely positive maps and *-homomorphisms

Definition

Let A and B be finite-dimensional C*-algebras with units 1 4 and 15
(think direct sums of matrix algebras). An element of a C*-algebra A is
positive iff it equals a*a for some a € A. A linear map ¢ : A~> B is
positive iff it sends positive elements to positive elements. A linear map

¢ : A~ Bis n-positive iff id y,(c) @ ¢ : Mp(C) @ A~> M,(C)®@ B is
positive. o is completely positive iff ¢ is n-positive for all n € N. A
x-homomorphism A — B from A to B is a function preserving the
C*-algebra structure: f is linear, f(aa’) = f(a)f(d’), f(14) = 13, and
f(a*) = f(a)*. A positive unital map A ~~> C is called a state.
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Quantum disintegrations Completely positive maps and *-homomorphisms

Examples

@ An n X n matrix is positive if and only if it is self-adjoint and its
eigenvalues are non-negative.
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Quantum disintegrations Completely positive maps and *-homomorphisms

Examples

@ An n X n matrix is positive if and only if it is self-adjoint and its
eigenvalues are non-negative.
e A x-homomorphism F : M,(C) = Mp,(C) exists if and only if
m = np for some p € N. When this happens, there exists a unitary
m x m matrix U (unitary means UU* = 1) such that
A 0

F(AAy=U| .. | U*forall Ac M,(C).
0 A
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Quantum disintegrations Completely positive maps and *-homomorphisms

Examples

@ An n X n matrix is positive if and only if it is self-adjoint and its
eigenvalues are non-negative.
e A x-homomorphism F : M,(C) = Mp,(C) exists if and only if
m = np for some p € N. When this happens, there exists a unitary
m x m matrix U (unitary means UU* = 1) such that
A 0
F(A)=U U* for all A € M,(C).
0 A
o If w: Mp(C) ~=C is a state, there exists a unique n X n positive
matrix p such that tr(p) = 1 and tr(pA) = w(A) for all A € M,(C).
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Quantum disintegrations

Completely positive maps and *-homomorphisms

From finite sets to finite-dimensional C*-algebras |

There is a (contravariant) functor from finite sets and stochastic maps to
finite-dimensional C*-algebras and completely positive maps.

classical/ quantum/ physics/
category theor . . . .
gory y commutative noncommutative Interpretation
. set phase space
object
) C*-algebra observables
. . . deterministic
— morphism function x-homomorphism
process
. stochastic completely non-deterministic
~~> morphism o
map positive map process
monoidal cartesian tensor combining
product product x product ® systems
~~> to/from robabilit C*-algebra state .
. / . P Y & . / physical state
monoidal unit measure density matrix
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Quantum disintegrations Completely positive maps and *-homomorphisms
From finite sets to finite-dimensional C*-algebras Il
Briefly, this functor is given by

X — CX

f:X~=Y)—~ (CY 3¢ =) freeCX
( )
xeX
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Quantum disintegrations Completely positive maps and *-homomorphisms

From finite sets to finite-dimensional C*-algebras Il

Briefly, this functor is given by

X — CX
(F: X~ Y) 1 (CY 56, D frec € C)
xeX

In the special case where f is a x-homomorphism, f,x = d,r(y), the sum
reduces to

D frec=D Gge= ) e

xeX xeX xef~1(y)
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Quantum disintegrations Completely positive maps and *-homomorphisms

From finite sets to finite-dimensional C*-algebras Il
Briefly, this functor is given by
X = CX
(F: X~ Y) 1 (CY 56, D frec € C)
x€X
In the special case where f is a x-homomorphism, f,x = d,r(y), the sum

reduces to
Z fyxex = Z 5yf(x)ex = Z Ex

xeX xeX xef*]-(y)
Therefore, an arbitrary function ¢ = > -y ¢(y)ey € CY gets sent to
de)D e =D 0y) D>, e=> o(f(x)ec=pof
yeyY xeX yeyY xef~1(y) xeX

the pullback of ¢ along f.
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Quantum disintegrations Non-commutative disintegrations

Non-commutative disintegrations

Definition (P-Russo)

Let (A,w) and (B, &) be C*-algebras A F B
equipped with states. Let F: B — A

be a *-homomorphism such that the R %
diagram on the right commutes. C
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Quantum disintegrations Non-commutative disintegrations

Non-commutative disintegrations

Definition (P-Russo)

Let (A,w) and (B, &) be C*-algebras A F B
equipped with states. Let F: B — A

be a *-homomorphism such that the R %
diagram on the right commutes. C

A disintegration of w over & consistent with F is a completely positive map
R : A~ B such that

A

the latter diagram signifying commutativity £-a.e.
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Quantum disintegrations Existence and uniqueness

Existence and uniqueness of disintegrations

Surprising: existence is not guaranteed in the non-commutative setting!
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Quantum disintegrations Existence and uniqueness

Existence and uniqueness of disintegrations

Surprising: existence is not guaranteed in the non-commutative setting!

Theorem (P-Russo)

Fix n,p € N. Let
Mpp(C) = M,(C)

tr(p - )ERk E=tr(o )

C

be a commutative diagram with F the x-homomorphism given by the
block diagonal inclusion F(A) = diag(A,...,A).
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Quantum disintegrations Existence and uniqueness

Existence and uniqueness of disintegrations

Surprising: existence is not guaranteed in the non-commutative setting!
Theorem (P-Russo)

Fix n,p € N. Let
Mpp(C) = M,(C)

tr(p - )ERk E=tr(o )

C

be a commutative diagram with F the x-homomorphism given by the
block diagonal inclusion F(A) = diag(A,...,A). A disintegration of w over
& consistent with F exists if and only if there exists a density matrix

7 € Mp(C) such that p =7 ® o.
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Quantum disintegrations Examples

Example 1: Einstein-Rosen-Podolsky

Theorem (P-Russo)

Let
0 0 0 O
_1lo 1 -1 0 % 110
P=%00 -1 1 0 “2[0 1}
0 O 0
and let F : M3(C) — M4(C) be the diagonal map.

Arthur J. Parzygnat™ & Benjamin P. Russo Noncommutative disintegration October 28, 2018 25 /29



Quantum disintegrations Examples

Example 1: Einstein-Rosen-Podolsky

Theorem (P-Russo)

Let
0 0 0 0
_llo 1 -1of 110
P=3%210 -1 1 o U‘z[o 1}
00 0 0

and let F : M3(C) — My(C) be the diagonal map. Then
tr(cA) = tr(pF(A)) for all A but there does not exist a disintegration of p
over o consistent with F.
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Quantum disintegrations Examples

Example 1: Einstein-Rosen-Podolsky

Theorem (P-Russo)

Let
0 0 0 0
_llo 1 -1of 110
P=3%210 -1 1 o U‘z[o 1}
00 0 0

and let F : M3(C) — My(C) be the diagonal map. Then
tr(cA) = tr(pF(A)) for all A but there does not exist a disintegration of p
over o consistent with F.

Proof.

p is entangled (not separable) and therefore cannot be expressed as the
tensor product of any two 2 x 2 density matrices. [
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Quantum disintegrations Examples

Example 2: Diagonal density matrices

Theorem (P-Russo)

Fix p1, p2, p3, pa > 0 with p1 + p2 + p3 + pa = 1, pr + p3 > 0, and
p2+ pa > 0. Let

pr 0 0 0
0 pp 0 O p1+ p3 0
= & =
P 0 0 ps O 7 { 0 p2 + PJ
0 0 0 ps

be density matrices and let F : M»(C) — Ma4(C) be the block diagonal
inclusion.
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Quantum disintegrations Examples

Example 2: Diagonal density matrices

Theorem (P-Russo)

Fix p1, p2, p3, pa > 0 with p1 + p2 + p3 + pa = 1, pr + p3 > 0, and
p2+ pa > 0. Let

pr 0 0 0
0 pp 0 O p1+ p3 0
= & =
P 0 0 ps O 7 { 0 p2 + PJ
0 0 0 ps

be density matrices and let F : M»(C) — Ma4(C) be the block diagonal
inclusion. Then tr(cA) = tr(pF(A)) for all A. Furthermore, there exists a
disintegration of p over o consistent with F if and only if

pLPa = P2ps3.
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Quantum disintegrations Examples

Summary

Formulating concepts in probability theory categorically enables one to
abstract these concepts to contexts beyond their initial domain.

?categorical probability theory?

standard probability theory
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Quantum disintegrations Examples

Summary

Formulating concepts in probability theory categorically enables one to
abstract these concepts to contexts beyond their initial domain. However,
we still lack a full categorical probability theory. Amazing discoveries are

yet to be made!

?categorical probability theory?
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Quantum disintegrations  Thank you

Thank you!

Thank you for your attention!
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