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Motivation

What would a weak 2-quandle be?

In Higher Operads, Higher Categories (2004) Tom Leinster proposed a
de�nition of weak ω-categories as algebras for a speci�c monad.

§ I wanted to show that weak ω-quandles could be expressed as algebras

for a similar type of monad

Consequently: I found a way, using globular PROs, to �nd weak ω
versions of any algebraic theory.
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PROs

De�nition

A PRO P is a strict monoidal category whose object set is isomorphic to N
and whose monoidal product ` : P ˆ P Ñ P is addition on objects.

The homset Ppn,mq are operations of arity n and coarity m



Algebras over a PRO

De�nition

An algebra for a PRO P in Set is a strict monoidal functor

f : P Ñ TautpAq.

The Tautological (Endomorphism) PRO TautpAq on a Set A

Objects are all cartesian powers of A

TautpAqpn,mq “ SetpAn,Amq

Composition is function composition in Set

Monoidal product is induced by the product structure on Set, which is

`addition on objects' since An ˆ Am – An`m



Generalization

Question: How can we combine the globular pasting encoded by Leinster's

globular operads and the cartesian algebraic structure encoded by classical

PROs into a single object?

Answer: We can enrich over the category over which operads are built!



Globular Sets

De�nition

A globular set is a contravariant functor G : GÑ Set. The category Glob

of globular sets is the category of presheaves on G.

Globular Sets

A globular set G “ ptGnunPN, ts
n
Gu, tt

n
Guq consists of a family of sets

tGnunPN together with source and target maps sG “ ts
n
G : Gn Ñ Gn´1u and

tG “ tt
n
G : Gn Ñ Gn´1u subject to the relations snG ˝ s

n`1
G “ snG ˝ t

n`1
G and

tnG ˝ s
n`1
G “ tnG ˝ t

n`1
G in each dimension n P N.



The Free Strict ω-category Monad T : Glob Ñ Glob

De�nition

The monad T : GlobÑ Glob takes a globular set X and returns the

underlying globular set of the free strict ω-category generated by X . It

extends globular set homomorphisms in the canonical way.

Consider the globular set 1 with exactly one cell in every dimension.
§ We may think of the elements of T p1q as all possible unlabeled

globular pasting diagrams.

De�nition

A collection is a globular set X equipped with a globular set

homomorphism x : X Ñ T p1q called the arity map.

The category Col is the slice category Glob{T p1q
§ This replaces numeric arities with `arity shapes' !
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Monoidal Structure in Col

De�nition

Let x : X Ñ T p1q and y : Y Ñ T p1q be a pair of collections. Their

composition tensor product x ˝ y : X ˝Y Ñ T p1q is de�ned by the diagram:

X ˝ Y //

��

T pY q
T pyq

//

T p!Y q

��

T 2p1q
µ1 // T p1q

X
x // T p1q

where !Y : Y Ñ 1 is the unique map from Y to the terminal globular set.

The underlying globular set X ˝ Y is the pullback of x and T p!Y q with the

arity globular set map x ˝ y de�ned to be the composition along the top

row.



Two Monoidal Structures in Col

Composition Tensor Product

The monoidal unit for ˝ is the inclusion of generators collection

I : 1 ãÑ T p1q
A globular operad is a monoid in Col with respect to the tensor

product ˝

Cartesian Product

As a slice category, Col has a cartesian product de�ned as the pullback (in

Glob) of two collection arity maps

A product consists of ordered pairs of n-cells, all of which have the

same `arity shape' in T p1q
The monoidal unit for ˆ is the terminal collection 1 : T p1q Ñ T p1q

These two monoidal structures satisfy `nice' compatibility axioms:



Two Monoidal Structures in Col

Composition Tensor Product

The monoidal unit for ˝ is the inclusion of generators collection

I : 1 ãÑ T p1q
A globular operad is a monoid in Col with respect to the tensor

product ˝

Cartesian Product

As a slice category, Col has a cartesian product de�ned as the pullback (in

Glob) of two collection arity maps

A product consists of ordered pairs of n-cells, all of which have the

same `arity shape' in T p1q
The monoidal unit for ˆ is the terminal collection 1 : T p1q Ñ T p1q

These two monoidal structures satisfy `nice' compatibility axioms:



Duoidal Category

De�nition - Batanin, Markl (2012)

A duoidal category pD,b, I ,d,U, δ, φ, θ,‘q consists of a category D, a

pair of 2-variable functors b : D ˆD Ñ D and d : D ˆD Ñ D, a pair of

unit objects I and U, three morphism δ : I Ñ I d I , φ : U b U Ñ U, and

θ : I Ñ U in D, and a lax middle-four interchange natural transformation

‘ : bpdp´,´q,dp´,´qq ñ dpbp´,´q,bp´,´qq

‘A,B,C ,D : rAd Bs b rC d Ds Ñ rAb C s d rB b Ds

such that

pD,b, I q and pD,d,Uq are both monoidal structures on D
U is a monoid object in pD,b, I q and I is a comonoid object in

pD,d,Uq

They are pseudomonoid in the category of monoidal categories and

lax-monoidal functors.



Enriched D-categories

De�nition

A category enriched over a duoidal category pD,b, I ,d,U, δ, φ, θ,‘q,
or simply a D-category, is an enriched category with respect to the

monoidal structure pD,b, I q.

So why is this interesting?

The second monoidal structure from our duoidal category D induces a

monoidal structure on DCat, the category of categories enriched over

D.
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Monoidal Structure on DCat

De�nition

The tensor product

‘ : DCatˆDCatÑ DCat

of D-categories E and F is given as the Cartesian product on objects and

for A,B P ObjpEq and X ,Y P ObjpFq we have

E ‘ FppA,X q, pB,Y qq :“ EpA,Bq d FpX ,Y q

as the hom-objects in E ‘ F , where d is the second monoidal structure on

D.

The unit D-category 1‘ for ‘ consists of a single object ˚ and a

single hom-object 1‘p˚, ˚q given by the monoidal unit U for the

second monoidal structure in D.



Cartesian-Duoidal Enriched Monoidal Categories

De�nition

A monoidal D-category is a pseudomonoid in the category DCat of
categories duoidally enriched over the duoidal category D.

De�nition

A cartesian-duoidal category is a duoidal category

pD,b, I ,ˆ,1, δ, φ, θ,‘q such that the second monoidal structure pD,ˆ,1q
is cartesian.

De�nition

A cartesian-duoidal enriched monoidal category is a pseudomonoid in

pCCat,‘, 1‘q, the monoidal category of categories duoidally enriched over

a cartesian-duoidal category C.
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Globular PROs

De�nition

A globular PRO is a cartesian-duoidal enriched monoidal category

pP,`,Oq enriched over the cartesian-duoidal category Col such that

The object set of P is N
The bifunctor ` : P ˆ P Ñ P is addition on objects

De�nition

An algebra for a globular PRO P is a strict monoidal Colfunctor

F : P Ñ GTautpAq to the globular tautological PRO on a globular set A.



PRO Globularization

Given an ordinary PRO P , we can construct a globular PRO P whose

algebras are exactly the strict ω-categories which are algebras for P whose

operations in P are given by strict ω-functors.

De�nition

Let P be any ordinary set PRO and consider the functor GP : P Ñ P
which maps P to its globularization P.

n ÞÑ n

Ppn,mq ÞÑ Ppn,mq :“ Ppn,mq ¨ 1 “
ž

Ppn,mq

T p1q

Note: We lift via the cartesian unit 1 : T p1q Ñ T p1q rather than the

globular composition unit I : 1 ãÑ T p1q (which is a sub-object) so that the

pasting composition described by T p1q is combined with the operations

lifted from P .
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PRO Globularization Induced Composition

For all n,m, p P N the hom-object Ppm, pq ˝ Ppn,mq can be written

Ppm, pq ˝ Ppn,mq “

¨

˝

ž

Ppm,pq

T p1q

˛

‚˝

¨

˝

ž

Ppn,mq

T p1q

˛

‚“

ž

Ppm,pq

¨

˝T p1q ˝

¨

˝

ž

Ppn,mq

T p1q

˛

‚

˛

‚“
ž

Ppm,pq

¨

˝

ž

Ppn,mq

pT p1q ˝ T p1qq

˛

‚

–
ž

Ppm,pqˆPpn,mq

pT p1q ˝ T p1qq

Which allows us to de�ne

˝Pn,m,p :“ ˝Pn,m,p ¨ φ : pPpm, pq ˆ Ppn,mqq ¨ p1 ˝ 1q Ñ Ppn, pq ¨ 1

The cartesian unit 1 is a monoid object with respect to ˝ with

multiplication φ : T p1q ˝ T p1q Ñ T p1q



PRO Globularization Induced Addition

Similarly, for all n,m, l , k P N, we can rewrite

Ppn,mq ˆ Ppl , kq “

¨

˝

ž

Ppn,mq

T p1q

˛

‚ˆ

¨

˝

ž

Ppl ,kq

T p1q

˛

‚“

ž

Ppn,mq

¨

˝T p1q ˆ

¨

˝

ž

Ppl ,kq

T p1q

˛

‚

˛

‚“
ž

Ppn,mq

¨

˝

ž

Ppl ,kq

pT p1q ˆ T p1qq

˛

‚

–
ž

Ppn,mqˆPpl ,kq

pT p1q ˆ T p1qq

Allowing us to de�ne

`P
n,m,l ,k :“ `P

n,m,l ,k ¨Φ : pPpn,mq ˆPpl , kqq ¨ p1ˆ1q Ñ Ppn` l ,m` kq ¨1

Φ : 1ˆ 1
–
ÝÑ 1



Strict ω-structures

How to Strict ω-ify Your Favorite Agebraic Theory

Consider your favorite algebraic theory.

Find a description of the PRO for that theory.

Globularize the ordinary PRO.

Algebras for the globularization are strict ω-categori�cations of the
original theory.



So Why Have We Really Done This?

Leinster's contractions naturally adapt to this situation.

De�nition

A contraction structure on a map f : X Ñ Y of globular sets is a choice

of lifts for every cell γ P Y whose boundary is the image of a pair of

parallel cells in X .

De�nition

A contraction structure on a globular PRO P is a map of globular

PROs F : P Ñ P 1 such that each component Fn,m : Ppn,mq Ñ P 1pn,mq
of its underlying Col-functor comes equipped with a speci�ed contraction.



Leinster's Free Contraction Construction

In appendix G of Leinster's Higher Operads Higher Categories he describes

a functorial construction for expanding a generic globular set map to get

one which has a natural induced contraction.

This construction naturally extends to maps of NCol-graphs by
applying it at each hom-object.

For any globular PRO P this gives a functor

CP : NColGraph{UpPqÑ ContpNColGraph{UpPqq

The right adjoint that simply forgets the contraction structure

hP : ContpNColGraph{UpPqq Ñ NColGraph{UpPq
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Two Key Structures on Globular PROs

The free monoid and free path category functors each have obvious right

adjoints

W : MonNColGraphÑ NColGraph
U : NColCatÑ NColGraph

Lemma

Given a globular PRO P, the induced functors on slice categories

WP : MonNColGraph{UpPqÑ NColGraph{UpPq

and

UP : NColCat{P Ñ NColGraph{UpPq

are monadic over NColGraph{UpPq.



The Free Globular PRO with Contraction Monad

We have three monadic functors:

hP : ContpNColGraph{UpPqq Ñ NColGraph{UpPq

WP : MonNColGraph{UpPqÑ NColGraph{UpPq

UP : NColCat{P Ñ NColGraph{UpPq

The pullback of which can be shown, using Kelly's theorem regarding

algebraic colimits, to be monadic. We shall denote the monad constructed

by this pullback

GP : NColGraph{UpPq ü

It's algebras are globular PROs with contraction over P.

The initial algebra for GP is the globular PRO whose algebras are the fully

weakened ω-categori�cations for the theory described by the classic PRO P!



Thank You
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